半刚性环形高分子链构象及其动力学的模拟研究

来源 :浙江大学 | 被引量 : 0次 | 上传用户:ltqhan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
半刚性环形高分子体系在包括高分子材料、生物化学、生物技术等领域具有重要研究意义。对半刚性环形高分子链的空间构型和动力学性质的研究将为构建具有优越的机械、热学、光学等性能的高分子复合材料开辟新的道路,并且半刚性环形高分子链为环状生物大分子提供了理论研究模型,例如:大肠杆菌的环状染色体、真核生物线粒体DNA、环状质粒和环状结构单糖。在本学位论文中,基于分子动力学模拟方法和粗粒化模型,我们对半刚性环形高分子的构象及动力学进行了广泛地模拟研究:包括纳米粒子/半刚性环形高分子复合物体系、非受限半刚性环线共混体
其他文献
油菜是我国主要和最具发展潜力的油料作物,优质菜籽油脂肪酸组成合理,富含天然营养成分,是国际公认的大宗健康食用油源。但长期以来优质油菜籽未能优用,菜籽油加工存在工艺高温长时、产品质量效益低等问题,已成为制约油菜优质高效产业化的关键瓶颈。在微波物理场下对油菜籽进行预处理,能显著提高菜籽油得率、增强菜籽油风味和提升菜籽油营养物质含量;更重要的是微波物理场下油菜籽可产生一种名为2,6-二甲氧基-4-乙烯基
学位
党的十九大报告明确提出“实施食品安全战略,让人民吃得放心”。一些实验室检测技术虽然可以满足精准检测的要求,但是样品预处理程序复杂、耗时长,难以及时地监控食品安全状况。快速检测技术可弥补其不足,逐渐成为食品安全检测检验的热门技术。表面增强拉曼光谱(Surface-enhanced Raman spectroscopy,SERS)技术是一种新型的快速检测方法,其光谱谱带较窄,不易重叠,可提供物质组成和
学位
纳米乳液通常是指液滴粒径小于200 nm的乳液。由于其液滴尺寸特性,纳米乳液外观上为透明或半透明液体,能够在较长时间内保持良好的稳定性,因而被广泛应用于制药、化妆品、农业及化学合成等领域。目前,采用低能乳化法制备纳米乳液的研究较为全面,基本明确了影响纳米乳液形成和稳定的主要因素。但是,仍存在很多问题需要进一步深入研究:(1)目前关于自乳化法制备纳米乳液的机理还没有统一的认识,需要更多的研究进一步探
学位
随着科学技术的进步以及应对日趋严苛的环境要求,化学品的合成越来越追求温和条件下的集成反应,即集多步反应于一体,实现化学品的高效合成与最低排放。因此,对催化剂活性与产物分布的控制提出了更高的要求。比如,酸性条件下的催化加氢反应,一方面要求催化剂本身具有催化加氢性能,另一方面要求催化剂具有耐酸腐蚀与低流失特性。再如,费托反应中铁基催化剂催化CO转化的同时需抑制CO2的产生等。对催化剂性能提出的附加要求
学位
荧光分析方法由于具有设备简单、灵敏度高、易于实现原位检测等优点在分析检测领域有着广泛的应用。将纳米材料(尤其是一些可以对荧光传感信号进行放大的纳米材料)应用到荧光分析检测中可以进一步提高方法的灵敏度,因此,近年来基于纳米材料发展的荧光纳米分析方法也得到了长足的发展和应用。在众多的纳米材料中,基于染料分子、碳量子点等荧光物质对二氧化硅纳米粒子功能化后得到的荧光二氧化硅复合纳米粒子,兼具二氧化硅纳米粒
学位
纳米粒子以其可控的合成和优异的物理化学性能备受关注,并在各个领域得到了广泛的应用。纳米粒子的程序化自组装和单个纳米粒子的电化学检测分属DNA纳米技术和电分析化学领域的研究前沿。当前,基于DNA的程序化纳米粒子自组装和单个纳米粒子的电化学检测取得了显著进展,但与类型丰富的纳米粒子材料相比,用于上述两方面研究的纳米粒子种类仍然很少。首先,纳米粒子的程序化自组装主要集中于金纳米粒子(AuNPs),而其他
学位
自表面增强拉曼散射(Surface-enhanced Raman scattering,简称SERS)发现以来,由于SERS具有的高灵敏度、高分辨率以及低成本等优点,有效的解决了传统拉曼光谱存在的信号微弱、检测灵敏度低、易受荧光干扰等问题,在环境监测、食品安全、军事科学、生命科学等领域中表现出了广阔的应用前景。随着纳米技术的发现,兼具高重复性、高可再现性、高稳定性、高灵敏度、大面积低成本以及简单工
学位
本论文采用简单溶剂热法和溶液快速热分解法制备了大比表面积纳米片组装的花状TiO2结构、SnxTi1-xO2-TixSn1-xO2球型核壳结构以及暴露{111}晶面的纳米片组装的TiO2线及管状结构,然后将其在氢气气氛中进行处理,得到氢化后的样品,同时采用两步法生长出[001]取向的TiO2纳米棒阵列。采用场发射扫描电子显微镜(FESEM)、多功能成像光电子能谱仪(XPS)、X射线衍射仪(XRD)、
学位
蛋白质非特异吸附是一种广泛存在的自然现象,常发生于各种生化工程材料及纳米材料表界面,近年来在免疫传感、电泳分离、样品富集分析、医用组织材料和防污工程材料等研究领域倍受关注。特别是当进行复杂生物样品(如血液、组织液、细胞外液等体液)分析时,人们对蛋白质非特异吸附的考察与探究显得尤为重要,主要原因在于蛋白质分子在界面的非特异作用可能会导致装置功能失效、分析物大量损失、检测信号不准确等。尽管人们对于蛋白
学位
伴随着量子物理的发展,低维纳米材料的研究趋势日益壮大。低维材料具有区别于三维材料的独特电子特征,从亚纳米尺度上研究电子的行为,有助于我们从本质上观察和发现低维材料的本质。扫描隧道显微镜(STM)具有亚纳米的超高空间分辨,和对表面局域态密度敏感的特点,可以研究样品表面及其表面吸附的原子和分子的电子态密度。还可以进一步分析体系中电子-等离激元,电子-电子,电子-分子轨道相互作用。拉曼光谱技术具有对材料
学位