小型混合储能系统功率分配策略及状态监测研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:eeee_188
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
以电池为主体的储能系统在新能源并网、电动汽车等应用场合提供不可或缺的作用。其中小型储能系统目前备受关注,具有广阔的发展空间。在电池为主体的储能系统中,关键的储能部件包括电池和母线电容极易老化失效,属于易损部件,其退化甚至会引起系统失稳。为提升小型储能系统的运行可靠性,本文在关键储能部件的寿命延缓策略和状态在线监测方法两方面开展较为深入的探究,完成的主要研究工作如下:面向包含电池与超级电容的小型混合储能系统,提出新的简化功率分配策略,优化电池大倍率放电工况下的电池的放电电流,理论上延缓了电池的寿命。仿真和实验结果显示了所提方案在面对感性负载启动功率和脉冲负载功率等短时高功率需求时,输入端能有效降低电池大倍率放电电流峰值,输出端能削减母线电压暂态跌落值,验证了所提简化功率分配策略的可行性。面向铝电解电容为主的母线电容应用场合,分别提出了单频纹波注入方案和双频纹波注入方案,在低采样频率下实现母线电容的在线健康状态监测。基于注入后的电感电流采样值推算电容电流,由此建立电容参数的数学表达,理论及仿真分析了不同采样频率和注入频率下的电容参数检测误差特性。所提方案在不同采样频率下的实验结果,证实了采样频率为开关频率的低采样频率下,电容参数检测误差仍可控制在约10%以下。针对小型混合储能系统存在的长稳态工况,提出基于多时间尺度电流注入的电池健康及荷电状态监测方案,以扩充辨识数据集的方式,解决普通在线辨识方法难以有效辨识的问题。通过离线动态工况实验获取电池等效模型参数,对比所提多时间尺度电流注入监测方案和普通在线监测方案,结果显示所提侵入式方法能够胜任长稳态工况的在线状态监测。
其他文献
由于生物质具有可再生性、储量丰富和清洁低碳等优点,因此开发清洁高效的生物质能利用技术对于缓解能源短缺和环境污染等难题具有重要意义。气化技术因其环境友好和产物丰富等优势,是一种极具应用前景的生物质能转化技术,上吸式固定床气化炉因其具有热效率高、操作简便和燃料适应性强等优点被广泛应用于生物质气化过程。但生物质高含氧量和低能量密度的缺点导致生物质气化产气热值较低,且其区域性和季节性的特点制约了气化炉的持
学位
运行变压器内部快速发展的放电故障是引起变压器严重事故的主要原因之一。传统的继电保护手段无法完全避免事故的发生,实际运行过程中常用的油中溶解气体分析手段无法预测突发性放电故障;目前已有的如检测变压器内部超声、温度等信号识别变压器故障,研究多针对内部局部放电阶段的信号特征分析,而对于从局部放电到放电击穿整个放电发展过程的信号特征分析亟待进一步研究。论文结合国家自然科学基金联合基金集成项目—电力变压器多
学位
并网逆变器作为可再生能源及储能系统连接电网的关键设备,其控制方法受到了广泛关注。相对于并网侧电流反馈(Grid-side Current Feedback,GCF)的方式,逆变器侧电流反馈(Inverter-side Current Feedback,ICF)所需传感器少,成本更低;但其对于电网阻抗的未知变化和GCF一样存在阻尼不足而电流振荡失控的问题,而现有的基于模型的预测控制、电容电压通过特定
学位
SF6气体广泛应用于气体绝缘开关设备(Gas Insulated Substation,GIS)、气体绝缘线路(Gas Insulated Transmission Line,GIL)等电气设备中,然而由于其极强的温室效应,为削减SF6使用量,工程上急需寻找可以替代SF6的环保气体。全氟戊酮(C5F10O)气体因其优良的环保性能和较强的绝缘强度有潜力成为SF6的替代气体,但由于C5F10O气体液化
学位
获取准确的土壤结构模型是变电站接地设计的重要前提,而对于冻土与考虑电阻率离群散布特征的土壤这两种非常规土壤结构,传统土壤模型反演方法存在诸多不足。多年冻土地区土壤电阻率高,分层数量多,通过传统方法反演水平多分层土壤模型时需要进行大量数值计算与迭代计算,反演效率低;对于存在电阻率离群散布特征的复合分层土壤地区,目前还没有方法能够根据四极法勘探数据反演得到这种土壤模型。因此,论文针对此问题开展了采用深
学位
浸油冷却轮毂电机功率密度高、散热能力强,省去循环油冷所需的油泵、油路管道等设备,提高了驱动系统的集成度和可靠性,在轮毂空间受限不具备油路外循环条件的特殊场合中具有重要应用价值。然而,轮毂电机内部浸油会产生附加油摩损耗,降低了电机输出转矩和效率,同时影响了电机温升的计算。因此,论文以浸油冷却轮毂电机为研究对象,深入开展油摩损耗解析计算、计及油摩损耗的电磁设计及优化、温升计算等方面的研究。主要内容包括
学位
作为宽禁带半导体电力电子器件的典型代表,氮化镓高电子迁移率晶体管(Gallium Nitride High Electron Mobility Transistor,GaN HEMT)由于其开关频率高、耐压能力强、导通电阻小等优势,广泛应用于新能源发电、智能电网、电动汽车等领域。研究表明,电力电子装置中功率器件出现故障的概率最高,且功率器件大多数失效故障是由温度引起的。准确评估功率器件的结温是功率
学位
航天器在X波段(8.2 GHz-12.4 GHz)有着测绘、通信等重要应用,而工作在X波段下的设备不可避免产生电磁干扰信号,会对易受电磁干扰的设备造成极大的危害,因此设备在X波段下拥有良好电磁屏蔽性能是确保航天器安全可靠运行的关键。航天器屏蔽电缆中的屏蔽层所用材料为铜镀银,但随着航天事业的不断发展,对材料的轻量化提出了更高的要求,这促进了低密度、易加工的导电聚合物材料成为金属的潜在替代品。然而导电
学位
碳化硅功率MOSFET由于工作温度、耐受电压、开关频率以及效率均远高于硅器件,被广泛应用于新能源汽车、光伏发电、航空航天、城市轨道交通等领域。然而,碳化硅功率MOSFET具有较高的开关速度,即较大的dv/dt,这会带来如过冲电压、过冲电流、电路中过大的电磁干扰、电机系统中的绝缘老化等问题。因此,对碳化硅功率MOSFET的dv/dt进行一定的控制或者抑制对提高碳化硅MOSFET的应用可靠性具有重大的
学位
随着“双碳”战略目标的推进,预计我国2030年风电装机容量将达4亿千瓦。伴随着风电渗透率的提高,风电波动的不确定性对电网的稳定性和安全性造成了巨大威胁。结合能量型储能与功率型储能的优势,混合储能系统能够较好地应对复杂的风电波动,大大提高风电并网功率的平稳。然而,频繁平抑风电功率波动将加速储能元件的寿命衰减,影响储能系统的工作性能与经济效益。因此,在有效平滑风电波动的基础上,考虑储能寿命模型进行储能
学位