论文部分内容阅读
互联网技术和电子商务的迅猛发展已经将我们带入信息爆炸时代,用户可获取的信息量的急增使得人们生活和选择日益多元化,但是与此同时,也带来了信息过载的问题。海量数据的同时呈现,一方面造成用户很难获取到自己感兴趣的信息,另一方面也使得大量少人问津的信息被淹没。在这种情况下,个性化推荐系统应运而生。个性化推荐系统的宗旨是在海量数据中直接为用户提供符合其兴趣爱好的内容与信息,其本质即是信息过滤。尤其是在电子商务领域,个性化推荐服务占据着极其重要的地位。而协同过滤系统是目前应用最为广泛的个性化推荐系统,它可以根据用户的历史信息对其未来的兴趣和爱好进行有效的预测和推荐。其中,协同过滤系统的核心问题是如何度量用户与用户之间的相似度。本文的主要任务即是对推荐系统中各种用户间相似度计算算法进行研究和分析,以达到最大限度的提高推荐效果的目的。论文的主要工作如下:第一,对个性化推荐系统进行了较深入的研究,详细分析了各种个性化推荐技术的内容、应用范围及现状,并重点研究了协同过滤推荐这一应用最为广泛的推荐系统。并对数据挖掘、复杂网络以及链路预测等相关技术基础进行了介绍。第二,文章在将传统的基于打分信息的余弦相似度和Pearson相关系数应用于推荐系统的基础上,将六种基于结构的相似度算法引入到推荐系统中。基于结构的相似度算法是利用网络结构中节点个体以及节点与节点之间的链接来分析计算用户与用户之间或项目与项目之间的相似性关系。同时针对这两种类型的相似度算法,文章从不同的角度进行了多组推荐实验,分析比较二者的推荐效果。第三,在基于打分信息以及网络结构这两种类型的相似度算法的基础上,论文提出一种新的基于结构的相似度计算方法,其同时融合了网络结构分析与用户对项目打分信息这两个因素,从而有效的避免了这两类相似度算法各自的局限性。最后,文章通过大量的实验数据结果验证了这种新的基于结构的相似度算法能够比较有效的提高个性化推荐系统的质量和效果。