细通道内超临界压力RP--3对流传热特性与机理研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:lyfqxx3
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
利用机载碳氢燃料作为冷却剂的各类主动冷却技术方案是实现航空燃气涡轮发动机和超燃冲压发动机有效热防护的最佳途径。冷却过程中燃料在超临界压力下流经细尺度通道(dh<3mm)进行换热,拟临界温度(Tpc)附近流体热物性剧烈的非线性变化将显著影响其流动传热规律。充分认识超临界压力碳氢燃料的流动传热特性与机理、实现主动冷却过程中传热系数的准确预测对于主动冷却技术的成功应用具有重要意义。本文采用实验研究与数值计算相结合的方法,以细通道内超临界压力碳氢燃料的流动传热过程为研究对象,开展了相关研究。
  通过搭建超临界压力碳氢燃料流动传热实验系统针对超临界压力RP-3航空煤油在竖直圆管(din=1-2mm)内的对流传热特性开展了实验研究,分别探究了高、低质量流率下热流密度、压力及流动方向对传热特性的影响规律。研究发现:高质量流率下,浮升力和热加速作用对传热的影响均可忽略,传热规律主要受热物性变化影响;当主流温度接近Tpc时发生传热强化,强化程度随热流密度增加或压力升高而减弱。低质量流率下,热加速作用可忽略,传热规律受浮升力作用和热物性变化共同影响;竖直向上流中入口段出现传热恶化,恶化程度随热流密度增加而加剧,随压力升高先加剧后减轻。低运行压力下,内壁温在超过Tpc后发生了第二次传热恶化。针对高、低质量流率两种情况,分别建立了考虑热物性变化和浮升力影响的竖直圆管内超临界压力RP-3对流传热关联式。
  自主开发了基于OpenFOAM的超临界压力流动传热数值计算程序,针对超临界压力RP-3航空煤油和正癸烷在竖直圆管(din=1-2mm)内的对流传热机理开展了数值研究。考察了多种湍流模型在入口效应、强变物性及浮升力作用工况中的准确程度,发现不同近壁处理和湍流热流封闭方式对传热的预测存在较大差异,其中MK-HNT k-ε-kt-εt模型计算结果与实验数据符合最佳。根据该模型计算得到的热-流场信息对不同传热现象的形成机理进行了阐述:高qw/G条件下,入口段传热恶化可归因于近壁区导热底层厚度的增加。在拟临界温度附近(Tb<Tpc<Tw),当流体比热峰值由壁面移动至过渡层内(5<y+<30)时,湍流热流急剧增大导致了传热强化。过渡层内径向密度梯度所引起的浮升力作用导致湍流边界层层流化,削弱湍流热流的生成并引发了传热恶化;传热恶化段下游换热能力的恢复可归因于过渡层内流体比热的增大以及湍流边界层进一步变形后湍流切应力的增加。
  针对超临界压力RP-3航空煤油在水平矩形通道(dh=2mm)内的流动传热特性开展了实验研究,测定了不同压力下跨临界温度范围内的绝热摩擦系数,探究了不同运行条件下自然对流和热物性变化对层流-过渡区传热的影响规律。研究发现:矩形通道内的转捩Reynolds数区间为1700-3200,层流区绝热摩擦系数略高于Shah-London关联式及Troniewski-Ulbrich关联式的计算值,Kandlikar关联式能够较好地预测表面粗糙度对于湍流区绝热摩擦系数的影响。浮升力引起的二次流导致通道周向壁温存在显著差异。在层流区,浮升力作用加强了流体混合并增强传热;在过渡区,浮升力和热物性变化共同影响传热,针对层流和过渡区分别建立了考虑浮升力影响和热物性变化的矩形通道内超临界压力RP-3对流传热关联式。
  自主开发了超临界压力碳氢燃料-固壁共轭传热数值计算程序,针对单侧受热矩形通道内超临界压力RP-3航空煤油的流动换热规律与机理开展了数值研究。研究发现:单侧受热矩形通道内超临界压力RP-3航空煤油二次流与传热间存在复杂的相互影响机制。流体受热后通道截面内形成的密度梯度导致二次流形态沿流动方向发生了较大变化。二次流的发展亦反作用于传热:在受热壁面中心处,二次流驱使高温流体朝向远离壁面的方向运动,热边界层厚度显著增加,湍流热扩散系数减小,发生传热恶化;在上壁面附近,二次流携带主流区低温流体朝向通道拐角移动,其冲刷位置处热边界层厚度减小,湍流热扩散系数增大,局部传热增强。在冷却用燃料总量一定的限制条件下,随着通道高宽比的增加,经侧壁面传递的热量占比增加,经上壁面传递的热量占比减小;通道内的二次流强度减弱,热分层现象更加严重。随着固壁导热系数的增加,经各壁面传递的热量占比差异减小,壁面热流、温度分布及燃料热沉利用更加均匀;进入加热段后二次流的空间分布仍较为对称且强度减弱。
其他文献
随着大气污染日益严重,我国对汽车尾气排放要求越来越严格,并推出相应法规。目前我国排放标准中的要求与国际标准基本相当甚至有些部分更严,其中轻型汽车和重型柴油车第六阶段排放标准已分别于2016年12月、2018年6月发布。但是,重型汽油车标准目前仍处于第四阶段,其以发动机台架排放测量作为型式认证的方法难以反映重型汽油车在实际使用中的排放水平;且重型汽油车排放主要集中在冷启动阶段,而现有的排放测试方法无
在既定条件下,能量的应用究其根本是能量自身品质的应用,即能质的应用。能质一旦达不到既定的应用条件,就可视为无效能。而无效能的出路有二:或是继续用于更低能质条件,主要涉及能源的梯级利用;亦或是提升能质达到既定能质的要求。目前,我国大约50%的工业能耗以废热形式被排放,导致了大量的能源浪费。同时,工业领域对100-160℃温度范围的热需求也越来越大。因此,科研人员提出采用能质提升技术来进一步解决当前所
在能源短缺与环境污染问题日益严重的背景之下,内燃机节能减排成为内燃机行业发展的必由之路。传统内燃机无法同时兼顾热效率提升与排放降低使得下一代内燃机研发步履维艰,采用低碳清洁燃料以及新型燃烧模式的发动机应运而生。柴油甲醇组合燃烧(Diesel Methanol Compound Combustion, DMCC)模式就是新型燃烧方式中的典型代表。前期研究表明,该燃烧模式不仅能实现热效率的大幅提升,而
学位
制冷热泵系统中由于压缩机需要润滑,润滑油会不可避免地进入到整个系统,润滑油与制冷剂混合会影响系统的传热,因此需要对含油的制冷剂换热情况进行研究。本文以新型三元混合工质R447A(质量组分68%R32/28.5%R1234ze(E)/3.5%R125)为目标工质,研究POE类润滑油对三元非共沸工质传热特性的影响。通过开展润滑油与制冷剂的相分离研究、含油的混合物粘度特性研究、含油制冷剂核态池沸腾研究及
学位
多年来,我国在中低温热能利用领域中对于实际热力循环的构建的基础理论缺乏突破,导致构建方法层面缺乏有力指导,使得此类实际热力循环效率不高,热力学完善度很低,制约了我国对中低温热能的有效利用。针对实际热力循环构建方法不明确的问题,已有学者提出通过改变循环工质协同性以提高所有热力过程性能的技术路线,进而发明了热力循环三维构建方法。该循环中使用的工质为非共沸工质,循环过程中通过工质的混合与分离,实现非共沸
学位
电辅助涡轮增压技术(eTurbo)能够有效解决发动机输出功率与发动机轻量化、紧凑化之间的矛盾,是内燃动力系统电气化和智能化的一种重要手段,受到内燃机研究领域的高度重视。电辅助涡轮增压柴油机是高动态强耦合系统,运行范围宽广,控制自由度高。如何实现宽广多变工况下电辅助涡轮增压柴油机节能、强劲、清洁地运行,是这项技术应用所面临的问题。本文以重型车用柴油机为对象,以降低运行能耗为目标,从进气回路跟踪和热电
学位
在能源和环境问题日益突出的今天,内燃机的节能减排问题受到了广泛的关注,其中缸内直喷(GDI)发动机的颗粒物排放问题,已成为世界内燃机领域的一个研究热点。  本研究工作基于国家自然科学基金“直喷汽油机中燃油撞壁及其与机油油膜相互作用机理的基础研究”课题和国家科技支撑计划“高效清洁增压直喷汽油机开发及产业化应用”课题的支持,重点针对GDI发动机的颗粒物问题,开展汽油/乙醇复合喷射发动机的相关研究,利用
学位
区域综合能源系统作为一种多种能源联合运行系统,它不是多种能源的简单叠加,而是经过互补替代等方式,按照不同能源间的特性,统一进行供给和调度,实现多种能源系统协同优化,减少能源输送过程中的损失,提升环境和社会效益。本文将可再生能源为主、包含多种能源形式的区域综合能源系统作为研究对象,通过层次分析法、优劣解距离法等进行系统优化设计研究,通过负荷预测、优化调度模型等进行系统优化运行研究,以此提高能源使用率
目前我国约1/3的石油用于汽车燃料消费,汽车在给我们带来出行便利的同时,产生的尾气给环境和人类健康都带来了危害。为解决能源短缺和减少汽车尾气的污染,需要发展清洁高效的发动机,并对汽油的燃烧反应动力学进行深入的研究。为了模拟汽油的燃烧行为,目前主流的方法采用替代燃料方法。本文选取五种典型的汽油替代组分正庚烷、异辛烷、甲苯、甲基环己烷和1-己烯开展研究。在实验方面,设计并搭建了常压射流搅拌反应器热解实
随着社会各界对安全性、经济性和环保性等要求的逐步提高,制冷工质也在逐渐更新换代。早期的氢氯氟烃(HCFCs)类和氯氟烃(CFCs)类制冷工质,根据《蒙特利尔议定书》以及相关修正案的规定,已被限制使用并逐步淘汰。此后被提出的氢氟烃类(HFCs)工质,由于它们较高的全球变暖潜能(GWP)值,而被诸如《京都议定书》、F-gas法规、基加利修正案等相关规定限制使用。而烷烃类(HCs)工质,由于它们的易燃易
学位