基于表面等离子体共振的椭圆侧芯光子晶体光纤传感器的研究

来源 :南京邮电大学 | 被引量 : 0次 | 上传用户:kanjiusheng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
表面等离子体共振技术作为一种直接检测技术,广泛应用于传感领域。光子晶体光纤具有多变、可控的结构和优良特性,因此成为光纤传感领域的研究热点。本文设计出一种新型光子晶体光纤,然后将其与金属表面等离子体共振技术结合生成传感器,并且分析了新型光子晶体光纤的基本特性和基于表面等离子体共振的光子晶体光纤传感器的传感特性。本文的主要内容为:1、介绍了光子晶体光纤的研究现状和分类,着重介绍了光子晶体光纤的基本特性;然后简要概述了基于表面等离子体共振的光子晶体光纤传感器的研究现状和检测机理。2、介绍了光子晶体光纤的几种常用数值分析方法,重点介绍了有限元法以及利用有限元法求解光子晶体光纤的基本步骤;然后根据麦克斯韦方程组推导出电磁波的边界条件;再根据光的全反射和倏逝波理论得到表面等离子体共振技术的原理;最后介绍了COMSOL Multiphysics仿真软件以及使用软件进行数值模拟的基本步骤。3、设计出一种新结构的光子晶体光纤,其包层由圆形空气孔和三种不同大小的椭圆形空气孔组成;讨论了新型光子晶体光纤基本特性与工作波长的关系;然后利用控制变量法,讨论了在同一工作波长下,孔间距、椭圆孔的椭圆率和椭圆孔的位置分别对光子晶体光纤基本特性的影响。最后通过优化光子晶体光纤的结构参数,发现该光子晶体光纤具有低损耗、低非线性效应,能够长距离稳定的传输光波,即当工作波长为1550nm处,光子晶体光纤的非线性系数小于10km-1W-1,两种正交偏振模的限制损耗分别为Lossx=3.06×10-11d B/cm、Lossy=5.19×10-11d B/cm。4、设计出一种基于表面等离子体共振的椭圆侧芯光子晶体光纤传感器,在左侧椭圆孔内涂敷金纳米薄膜并填充待测液体,使其作为检测通道;讨论了在不同待测液体折射率下的纤芯损耗的变化情况;讨论了当待测液体折射率处于1.32~1.43范围内时,圆形孔直径、孔间距、椭圆率和金纳米薄膜的厚度分别对传感器灵敏度的影响。研究发现该传感器在折射率处于1.38~1.43范围内具有高灵敏度,最高可达34600nm/RIU,在高灵敏度传感器领域具有较大的参考价值。
其他文献
工业革命以来,对流层温度在全球范围内显著升高。一般认为,增温导致更强的蒸发,空气中的水汽含量随之变多。可降水量变多,降水是有可能增加的。然而,目前时间跨度不够长或空间覆盖范围不够广的各种资料对全球降水长期变化并没有统一的结论。全球变暖背景下降水长期变化是不显著、不确定的。本文以CMIP5多模式历史模拟(1850-2005年)资料为主,从大气水循环发展和水循环关键环节多角度理解变暖背景下降水的长期变
研究背景腹主动脉瘤被认为是一种慢性血管炎症性疾病。巨噬细胞极化在调节腹主动脉瘤形成中起着至关重要的作用。环状RNA是心血管疾病发展过程中调控巨噬细胞极化的重要调节因子。然而,环状RNA是否能通过调节巨噬细胞极化调控腹主动脉瘤形成目前仍然未知。在该研究中,我们通过比较两种不同极化条件(M1型巨噬细胞和M2型巨噬细胞)下的环状RNA微阵列数据,鉴定出了一种在M1型巨噬细胞中富集的环状RNA,circC
本文主要研究了Fe-S体系化合物材料在高温高压条件下的人工制备以及对天然Fe-S体系化合物材料的性能调控,主要成果如下:(1)采用高温高压法,在常压至5 GPa的压力条件下以铁粉与硫粉为原料,进行了一系列的变压硫铁反应实验,以研究不同压力与温度下的高温高压硫铁反应。高温高压有助于铁硫元素的充分反应,压力条件能够影响硫铁反应产物的微观形貌与所含各相的相对含量。在1-2 GPa的压力范围内,随着压力的
根据中国第七次全国人口普查数据,2020年中国人口达14.1亿,65岁及以上人口占比达13.5%,我国人口老龄化进程加快,居家养老将成为未来主要养老模式之一,该模式中异常跌倒是独居老人的最大威胁之一。针对跌倒的事前预防、事中检测、事后评估研究已经成为当前研究热点之一。随着智能视频分析技术的发展,如何快速且准确地识别出监控视频中独居老人异常跌倒行为具有重要的研究意义。本文基于YOLOv5算法提出了一
四氯乙烯(PCE)广泛分布在环境中,主要来自于工业过程、干洗、纺织加工和金属脱脂等行业,尽管PCE现阶段已被干洗行业禁用,但由于其具有很好的挥发性和稳定性,容易在环境中长距离迁移并且稳定存在,因此仍然是当下关注度较高的地下水污染物之一,属于2A类致癌物,人类与之长期接触会引发一系列健康问题,因此探寻一种廉价的、无害化转化PCE的技术是十分必要的。硫化物是自然环境中含量丰富的还原试剂和亲核试剂,例如
光电探测器作为一种利用光电效应直接将光信号转化为电信号的装置,普遍应用于军事国防、环境监测、医疗通讯等各个领域。迄今为止,传统光电探测器由于其制造过程复杂耗时、成本昂贵、材料固有性能限制等缺点,导致其在实际应用中受到了许多限制。有机无机杂化钙钛矿材料具有高吸收系数,高迁移率,可调节带隙,长载流子扩散长度以及可溶液加工等优点,基于钙钛矿材料制备光电探测器的研究已经引起了广泛关注。研究人员尝试利用聚合
青藏高原热状况对全球环流和降水形势产生显著影响,高原上空大气的非绝热加热及其变率是影响亚洲夏季风强度与全球大气环流异常的主要驱动力之一。本论文围绕高原夏季大气热源的年代际变化,深入分析了其时空分布特征以及对北半球不同区域环流、降水的可能影响机制。此外,针对1979年至今全球变暖增速背景下,高原作为全球变化的“敏感区”,其上空大气热源变化趋势及其与北半球中纬度环流趋势型的潜在联系也进行了初步讨论。主
随着社会的飞速发展,能源短缺的问题越来越明显,为了能够实现可持续发展的目标,对可再生清洁能源的研究迫在眉睫。太阳能电池是利用光生伏打效应将光能转换为电能的装置,而钙钛矿太阳能电池凭借优异的光伏性能吸引了众多研究者的目光,目前,其最高认证光电转换效率已提升至25.7%。虽然,钙钛矿太阳能电池在光伏领域中展现出强大的应用潜力,但是,实现其商业化的应用仍旧面临很多问题。如存在钙钛矿太阳能电池各层材料的能
阿尔兹海默症(AD)是一种进行性的神经退行性疾病,多发生于65岁以上的老年人,是痴呆症中最常见的一种类型。随着人口老龄化进程的加快,患有AD的病人每年都在增加,给社会和家庭都带来了沉重的负担,因此,AD的发病机理受到了研究人员的广泛关注。然而,AD病因极其复杂,其中β-淀粉样蛋白(Aβ)级联学说被认为是AD发病的关键机制之一。目前,对AD药物的研发大多都是基于Aβ的致病机理来展开的。随着生物学的不
新生代是预测地球未来气候发展变化的重要参考时期,也是地质历史上与人类生存发展关系最为密切的时期。随着温室气体的大量排放,地球未来极有可能发生类似地质历史时期发生过的全球变暖事件,如晚渐新世和中新世的“温室地球”:晚渐新世为古近纪最后一个时期,与现今相比,温度高约4°C,p CO2高约300ppm;中新世为新近纪第一个时期,温度和p CO2均略高于现今。晚渐新世至中新世时期,地球由温室向冰室过渡,同