Synthesis and Optoelectronic Properties of Lead-free Halide Perovskites Cs2AgInCl6

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:edwardeternity
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Cs2AgInCl6近年来发展为无铅双钙钛矿系列A2(BⅠBⅢ)X6家族的重要组成部分。由于其无铅环保、温湿度环境稳定,Cs2AgInCl6钙钛矿有望成为卤化铅钙钛矿可能的替代品之一。尽管Cs2AgInCl6是直接带隙半导体材料,但宇称禁戒跃迁(PFT)限制了这种材料的潜在应用。近来的研究工作表明结构畸变可破坏材料的反演对称性,突破PFT限制,可拓展该材料的应用。在该论文中,我们制备了一系列Cs2AgIn(1-x)BikCl6(x≤0.5)样品。样品XRD数据的精修结果表明,随着Bi掺杂浓度的增加,In(Bi)Cl6和AgCl6八面体体积相应地扩大与收缩,在样品内部产生了很强的结构畸变。由于Jahn-Teller效应,宇称禁戒跃迁被破坏,导致了Cs2AgIn0.70Bi0.30Cl6样品的最大光发射。结合XRD、激发光谱、发射光谱以及荧光寿命等数据,我们得到光发射主要起源于样品的表面缺陷和自陷激子(STE)。这个结果表明,控制结构畸变程度是增强卤化物钙钛矿荧光的强有力手段。我们还发现样品在高温、UV光照射以及长时间空气暴露等不同的外界条件下保持着稳定发射的特性。自制的LED样品表现出优异的性能,拓展了该样品的潜在应用。降温同样也可以用来实现结构畸变。通过比较低温下Cs2AglnCl6掺杂样品的XRD数据和荧光光谱,我们发现较高的量子效率与AgCl6以及InCl6八面体的结构畸变有着密切关联。较大Huang-Rhys因子和相关功率分析则佐证了发射主要来源于自陷激子。高压实验研究则更加凸显了结构畸变在发射机制当中的作用。在Cs2AgInCl6和掺杂浓度为15%和25%的样品当中,荧光随着压力的升高而增强。但是对于50%Bi掺杂的样品,荧光随着压力的升高而减弱。所以,高压进一步确定了结构畸变与荧光发射之间的关联。随着LED的广泛应用,Cs2AgInCl6作为一种闪烁体也被人们进行了深入研究。因为X射线闪烁体的光效率与带隙直接相关,所以通过对Cs2Agln(1-x)BixCl6(0≤x≤50)的带隙调控可以获得更高的光效率。Bi的取代使得Cs2AgIn(1-x)BixCl6(0≤x≤50)具有更广泛的通用性,Bi的浓度能灵敏地调控光发射的强度,并实现对X射线闪烁特性的调控。
其他文献
本文通过等离子体电弧法,以铁-硅-碳系为研究对象,制备了 Fe3Si@C纳米胶囊、纳米SiC和中空碳纳米线,同时也通过水热合成法制备了 Co9S8-DETA杂化纳米盘层状材料,系统地研究了它们在2-18 GHz频率内的电磁波吸收性能。研究发现,通过调节纳米胶囊外壳厚度、引入掺杂元素以及改变形貌来调控纳米材料的微观结构,可以实现对上述纳米材料的电磁参数的调控进而调控其电磁波吸收收性能。本论文中设计并
镓基液态金属具有许多优异的性能,如低毒性、高表面张力、高导电性和高导热性等,在电子皮肤、可控电子开关、软机器人和能源设备等领域具有重要的应用价值。液态金属液滴是液态金属研究领域的一个重要分支。然而,由于液态金属(氧化层)的润湿性和附着力,使得控制液态金属液滴的运动具有很大的挑战性。因此,在本论文中,通过调控液态金属的表界面张力来研究电场驱动、氯化氢蒸汽驱动液态金属液滴的运动。同时,对液态金属液滴进
应力驱动的材料自组装以及失稳形貌在生活中十分常见,研究这些形貌不仅可以解释自然界中丰富形貌的形成机理,在工业界也具有重要的应用价值。一方面我们需要抑制器件在复杂应力环境下的服役过程产生失稳形貌,从而避免它们发生老化失效现象;另一方面随着现代制造业尤其是微纳米加工制造的迅速发展,各类自组装以及失稳形貌为自下而上的微纳制备方法提供了指导。本文主要聚焦各类低维材料自组装以及失稳形貌中的关键性问题,研究了
随着人工智能技术的不断发展,机器学习在日常生活中应用的越来越广泛,衍生出如智能交通,智慧城市,智能家居,智能医疗等应用领域。在智能医疗中,人工智能技术与医学影像、辅助诊断、药物研发、健康管理、疾病预测等方面相结合,并初见成效,展现出广泛的应用前景与发展优势。光学显微镜作为医疗研究中不可或缺的利器,解决了生命医学研究过程中出现的很多难题。但由于诸如衍射极限等物理限制,使传统光学显微镜在应用上达到了瓶
新型多组元钴基高温合金拥有优异的综合高温性能,同时兼具良好的加工成型性能,综合使用性能达到了商用变形镍基高温合金的水平,展现出较好的工程化应用前景。但是,想要成为新一代的商用变形高温合金,必须建立合理的生产加工工艺路线以实现新型钴合金的工程化应用,并且仍需要继续优化和提升新型钴合金的力学性能。基于上述考虑,本论文主要针对一种新型多组元钴基高温合金的热变形加工特性及其具体生产加工工艺的强韧化机理进行
由于内禀的原子非简谐振动,固体材料通常表现出“热胀冷缩”的现象(即正热膨胀),导致材料尺寸随环境温度变化而变化。在精密光学仪器和微电子器件等领域,材料的热膨胀会严重影响仪器的精度与正常功能,不同零部件间热膨胀系数的差异会造成界面匹配失效、脱落甚至断裂的灾难性后果;在航空航天和低温工程等领域,循环往复的温度波动还会造成应力集中与疲劳失效,进而缩短材料或器件的服役寿命。负热膨胀特性(可与正热膨胀材料进
由于具有独特的物理化学性质和较好的生物相容性,碳纳米材料在生物医学等领域中引起了广泛的关注。近年来的研究发现,碳纳米材料在特定的生理或病理条件下,具有调节活性氧物种(ROS)水平的能力,可用于对不同疾病的缓解与治疗。然而,由于在调节氧化还原水平的过程中,碳纳米材料的活性较低,且机制不明确,使其在实际应用中受到了较大限制。在本论文中,我们通过系统地研究碳纳米材料表面的含氧官能团对其ROS调节活性的影
碳纳米管增强铝基(CNT/Al)复合材料具有高强度、高刚度、低密度等优点,在航空航天、交通运输等领域应用前景广阔。在过去的二十年里,虽然报道了许多关于CNT/Al复合材料的研究,但在CNT/Al复合材料制备、加工以及力学行为等方面仍存在一些需要深入研究的问题。高能球磨(HEBM)工艺虽能够高效分散CNT,但CNT在HEBM中的损伤和分散问题仍缺乏深入理解和统一认识。由CNT加入引起的室温韧性低以及
随着生物医学材料的迅猛发展,新型多功能纳米/微米级材料由于其具有优异的多功能性质,如磁性、高吸附性能和光学性能等,展现出非常高的市场需求。在设计新材料的同时,我们需要考虑到其生物相容性、可长时间保存、低成本和高产量等因素。近来,钙基生物材料作为传统的矿化材料,特别是碳酸钙和羟基磷灰石已经成为许多研究领域的热点。无定形碳酸钙(即非晶相CaCO3,ACC)由于其具有低成本、高水溶性、良好的生物相容性和
作为新型碳材料的一种,碳纳米管因其独特的物理化学等性质引起人们的广泛关注,其侧壁类型及手性的纯度对其性质起着决定性的作用,目前利用有机合成的方法自下而上地制备高纯碳纳米管成为科研工作者的研究热点。本论文的主要研究方向正是利用有机合成方法自下而上地构筑不同结构的扶手椅型碳纳米管的环对苯撑共轭片段。通过功能化环对苯撑结构,可以得到多种弯曲环对苯撑的π延伸结构,探索了其在光电、超分子、气体吸附、膜分离等