金属配合物M-BHT(M=Cu,Co)及N,P共掺杂富勒烯电催化CO2还原的理论研究

来源 :苏州大学 | 被引量 : 0次 | 上传用户:lmjgood520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二氧化碳(CO2)电化学催化还原为甲酸、一氧化碳以及甲烷等增值产物是实现CO2资源循环利用的有效途径。二氧化碳一般涉及多个质子-电子对转移才能被还原为甲烷等增值产物,反应历程和机理相当复杂。电化学热力学分析方法在研究催化反应机理和预测催化剂催化活性方面得到了广泛的认可,本文基于电化学热力学方法并结合密度泛函理论计算系统地研究了金属配合物M-BHT(M=Cu,Co)与氮、磷-共掺杂富勒烯结构作为CO2还原电催化剂的催化特性。本文主要内容和结果为:1.论文研究思路(1)通过计算CO2还原为特定产物(如CH4)的可能反应中间体(*CO2、*COOH和*CO等)在催化剂表面的自由能,以及反应所涉及的可能的基元反应的自由能变化得到整个反应的最低能量路径(反应机理)的自由能图;(2)根据最低能量路径得到反应的速控步骤(活性决定步骤)所涉及的基元反应的自由能变化得到反应的起始电位;(3)结合起始电位的大小分析不同催化剂的催化性能;(4)结合电子结构计算结果初步分析催化剂催化活性与其电子结构的相互关系。2.Cu-BHT作为CO2还原电催化剂的研究构建了单层和双层(1×1)Cu-BHT(001)表面结构并研究了其将CO2还原为CH4的电催化特性。研究结果表明:CO2在单层与双层Cu-BHT表面上还原为CH4的反应机理和催化活性位点相同;单层Cu-BHT的催化活性高于双层Cu-BHT,理论起始电位分别为-0.76 V和-1.02 V;反应的速控步骤为*CO2+H+e-→*COOH;3.Co-BHT作为CO2还原电催化剂的研究构建了单层和双层(1×1)Co-BHT(001)表面结构并研究了其将CO2还原为CH4的电催化特性。研究结果表明:CO2在单层与双层Cu-BHT表面上还原为CH4的反应机理和催化活性位点相同;理论起始电位分别为-0.66V和-0.58 V,即双层Co-BHT催化活性高于单层;4.M-BHT(M=Cu,Co)作为CO2还原电催化剂的研究构建了(3×1)Cu-BHT(001)表面结构并研究了其将CO2还原为CH4和HCOOH的电催化特性并与(1×1)Co-BHT(001)催化特性进行对比。研究结果表明:双层Co-BHT将CO2还原为CH4的催化活性高于双层Cu-BHT;Co-BHT将CO2还原为HCOOH的催化活性高于Cu-BHT。5.氮、磷共掺杂富勒烯结构作为CO2还原电催化剂的研究构建了不同类型氮掺杂富勒烯结构与氮、磷共掺杂富勒烯结构并研究了其将CO2还原为CO的催化特性。结果表明:吡啶氮和磷共掺杂富勒烯结构的催化活性最好(理论起始电位为-0.27 V),速控步骤为*CO解吸附过程。中间体*COOH的吸附能与形成*COOH所需的热力学能垒成良好的线性关系。
其他文献
有机半导体因其化学结构可调、柔性以及大面积加工等优势在近几十年成为研究热点之一。然而和无机半导体相比,有机薄膜的电运输性能尚较低。其中有机半导体的光电性能与其薄膜中分子堆积、结晶度、生长模式和纯度等直接相关。在典型的有机半导体器件中,有机薄膜通常生长在非晶衬底上,薄膜质量相对较差。近年来,随着二维材料的迅速发展,这种具有原子级平整、层间范德瓦尔斯(van der Waals)相互作用的材料为有机薄
学位
聚合物结构与性能的关系一向是科学家们关心的重要问题。随着合成技术的不断发展,越来越多新型聚合物,例如环状聚合物被制备分离。它们与传统的线性聚合物相比缺少端基,具备独特的结构与性能,吸引了众多的科研关注。近年来,得益于临界液相色谱(LCCC)技术的发展,环状聚合物制备纯度提高,针对其的研究开展成为可能。聚合物的扩散系数(D)受其拓扑结构影响,是其重要基础特性。迄今为止,针对线性和支化聚合物的扩散研究
学位
中学音乐教育作为美育教育的一个最为重要的途径之一,已经成为了广大教育工作者关注的焦点。按照我国教育部制定发布的《义务教育音乐课程标准》(2011年版)的要求,以音乐审美为教育核心,全面提升学生的音乐素养成为了中学音乐教育的重中之重。欣赏课是中学音乐教育的重要组成部分,我国民族歌剧则融入了具有民族时代特色的表现题材,具有民族性和综合性。因此在中学音乐欣赏教学中加入民族歌剧可以帮助学生全方位提升音乐审
学位
纳米生物技术的快速发展推动了纳米材料在生物医学领域的应用。其中,荧光硅纳米颗粒(silicon nanoparticles,SiNPs)凭借其优异的光学性质、表面易修饰性和良好的生物相容性等优势,在各种疾病的诊断和治疗中得到广泛应用。值得关注的是,到目前为止,还没有基于硅纳米颗粒的药物递送系统穿越血脑屏障(blood-brain barrier,BBB)治疗胶质母细胞瘤(glioblastoma,
学位
人体通过服装这一阻碍向外环境进行热湿传递,在着装热湿系统中,热湿传递是耦合的,两者都对衣下微环境有决定性影响。着装热湿系统的计算机模拟越来越多被应用于预测衣下微环境和评价着装舒适性。然而,目前大部分模拟中都把焦点放在热传递,而忽略了湿传递的影响。服装作为多孔介质层,允许水蒸气透过,这个透湿性能会直接影响衣下微环境,并进一步影响着装舒适性。要在着装数值模拟中进行湿传递的模拟,就需要相应的表征水蒸气透
学位
<正>水蛭肽是医用水蛭唾液腺分泌的含65个氨基酸残基的小蛋白,它是凝血酶强有力的天然特异抑制剂,它和凝血酶紧密结合成可逆复合物,从而切断纤维蛋白的形成过程,阻止凝血酶催化的止血反应及凝血酶诱导的血小板激活反应,达到抗凝的目的。
会议
动脉粥样硬化是当今社会最常见和最具有危害性的疾病之一,抑制或逆转血管内皮细胞功能紊乱对动脉粥样硬化的防治具有重要意义。血管内皮细胞功能紊乱主要表现为其一氧化氮(NO)释放量、生物利用度的降低以及内皮型一氧化氮合酶(eNOS)表达量的降低,因此可将NO释放量和eNOS表达量作为评价内皮细胞功能状态的指标。水蛭(Hirudo)是一味传统中药,具有抗血栓、抗凝血及抗炎症等多种功效。近年来国内外对水蛭药理
会议
燃料电池(fuel cells)作为一种清洁、可重复使用的替代能源,具有转化高效,低噪音排放,快负荷响应等优点,具有广泛的应用前景。其中,由于碱性阴离子交换膜燃料电池使用的催化剂较为廉价,节约成本,因此与质子交换膜燃料电池相比,具有良好的商业化前景更好。阴离子交换膜是AAEMFCs中的一个关键组件,其性能与电池性能有重要影响。所以制备具有高电导率、高化学稳定性、高机械强度和适中吸水溶胀度的阴离子交
学位
服装原型作为服装设计的基石,对服装合体性起决定作用,人体体型则是原型结构设计的基础,为服装合体性研究提供了方向。目前,我国服装企业常用的东华原型、日本文化式原型和刘瑞璞标准纸样均是根据国标号型中的标准体型进行设计,同一号型下的人体具有多种形态,根据标准体型设计的原型很难满足不同体型的服装合体化需求。体型分类方式多样,体型分类指标需要一定的学术知识基础,普适性较差,且分类较细,难以运用于企业生产运营
学位
高耐热和高强度的新型可回收热固性树脂的研发是当前的研究热点之一。由于固化过程形成了永久交联的三维网络,传统热固性树脂成型后不溶解、不熔融,废弃的热固性树脂及相关产品难以回收再利用,由此造成的资源浪费和环境污染是当今人类社会亟需解决的难题。因此,新型可回收热固性树脂的研发具有重要意义和实际应用价值。近年来,人们将动态共价键与热固性树脂相结合,开发出具有动态交联网络的新型热固性树脂,其在热、溶剂或光的
学位