古尔班通古特沙漠生物结皮在地-气界面CO2交换中的作用

来源 :中国科学院大学 | 被引量 : 0次 | 上传用户:mem12345
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
生物结皮是由蓝藻、绿藻、地衣和藓类等为主的生物体所组成的有机复合体,其覆盖约占干旱区地表活体覆盖面积的40%以上,在一些受干扰较少的极端环境群落中生物结皮甚至达到了70%的活体盖度。作为荒漠系统的主要构建者和生态系统工程师,生物结皮中地衣的光能利用率为0.5~2%,与维管束植物处于同一量级,而在条件适宜时它们的光合速率在两个量级之间变化,即在0.1~11.5μmolCO2 m-2s-1之间,而后者与同一生物气候区旱生灌木的光合速率相当。虽然生物土壤结皮的瞬时光合速率较维管束植物低,但如果考虑到生物土壤结皮在干旱、半干旱地区盖度的面积,生物土壤结皮的光合固碳是这些地区的一个潜在碳汇。另外,生物结皮作为干旱区主要的地表覆被类型,其独特的生物学和物理学特征不但影响土壤水文过程,还影响土壤结构,从而间接影响土壤碳的释放过程。因此,了解生物土壤结皮及其发育土壤的碳过程是全面解析荒漠地区碳循环不可或缺的重要环节。  本研究以古尔班通古特沙漠为研究对象,通过野外调查摸清研究区生物结皮的空间分布情况,然后通过野外原位和模拟实验观测生物结皮土壤碳通量特征变化特征,同时结合室内控制实验分析影响生物结皮光合固碳的水热因子。目的是为了:(1)从全新的角度理解生物结皮对荒漠地区碳循环的影响;(2)阐明其影响过程和程度;(3)最后为荒漠地区管理提供决策意见。主要结果包括以下几个方面:  生物结皮的分布和发育特征  本文通过数码照相法估算了整个沙漠地区生结皮盖度为41.34%,其中地衣-藻结皮盖度占到了90%以上。尽管与维管植物生物量相比,生物结皮层的碳储量可以忽略不计,但是其广泛的分布面积及其对土壤碳通量的影响是不可小视的。另外,通过分析生物结皮分布与环境因子关系,本研究发现随着年降雨量的增加,生物结皮的盖度从25%显著增加到94%,并且,苔藓结皮在结皮总盖度中的比例也从0增加到18%。说明,随着降雨量的增加,光合能力相对高的苔藓结皮的优势度逐渐增加;与此同时,随着降雨量的增加,土壤粘粉粒含量、养分含量和有机碳储量也显著提高。以上结果说明,降水是主导古尔班通古特沙漠生物结皮分布和土壤碳储量的主要环境因素。  生物结皮对土壤有机碳的影响  生物结皮除了自身能够进行光合固碳外,还能够捕捉沉降物,从而改变土壤有机碳含量。本研究通过调查不同演替序列结皮发育土壤有机碳的分布情况,发现随着结皮发育程度的增加,土壤有机碳含量显著增加,且土壤有机碳主要集中在表土层。另外,结皮去除后,土壤有机碳相比完整结皮样地下降得更快,间接说明结皮去除后土壤呼吸释放碳增加。而随着后期生物结皮的重新定植(叶绿素含量逐渐增加),6个月后土壤有机碳含量又开始增加。因此,通过对比土壤有机碳在时空尺度上变化,可以清晰地认识到生物结皮是荒漠地区土壤有机碳的主要贡献者之一。  生物结皮对土壤水分、温度的影响  在该地区,生物结皮减小降雨入渗,使得土壤水分浅层化,结皮层有储存水分的作用。同时,结皮的存在又会增加土壤温度,促进土壤水分蒸发。而土壤水分、温度变化直接控制土壤呼吸过程,因此,生物结皮会通过调控土壤水热状况变化间接影响土壤碳通量过程。  生物结皮对土壤呼吸的影响  生物结皮除了光合作用还进行呼吸作用,直接参与土壤呼吸过程。另外生物结皮通过改变土壤水热状态间接影响土壤呼吸。当结皮去除后,土壤呼吸发生明显改变。干旱季节,结皮去除后,土壤碳释放量增加;湿润降雨季节,结皮去除后,土壤呼吸减弱。干旱季节,结皮处于休眠状态,结皮本身不参与土壤呼吸,但是结皮层能够对下层土壤呼吸释放的CO2产生一个物理阻隔作用,其阻隔量约占土壤呼吸的5%-27%。湿润季节,降雨主要刺激结皮层呼吸,有结皮覆盖土壤呼吸显著大于去结皮土壤。一次降水过程(从降水到结皮干燥无活性为止)生物结皮层呼吸约占整个土壤呼吸的65%-75%;降雨强度越大,结皮层呼吸所占比重越大。  生物结皮的光合固碳  生物结皮中的植物体都是变水植物,因此生物结皮的光合固碳过程必然跟水分有关。该沙漠地区降雨和融雪水是生物结皮光合固碳的主要水分来源。通过室内模拟研究发现,生物结皮净光合作用所需的最适水分为60%(质量含水量),温度为15-20℃。另外考虑到温度越高,水分蒸发越快,因此,水热耦合过程是生物结皮光合固碳的最关键因素。本研究发现相对较低的温度(5-15℃)和较高的水分条件(40%-80%)有利于生物结皮光合固碳,而这一适宜的环境条件主要出现在该沙漠地区的早春融雪期和早春降雨后,因此,春季势必是生物结皮光合固碳高峰期。野外观测结果证实了这一假设,全年地衣-藻结皮的光合固碳总量约为21.77±2.14 gCm-2,苔藓结皮为26.68土4.09 gCm-2,其中春季固碳量为11.77-14.07 gCm-2,占到全年总固碳量的47%-49%。  生物结皮对地-气界面CO2交换的影响  生物结皮是地表碳通量的主要参与者。生物结皮土壤碳通量在时间尺度上的变化主要受土壤水分和温度影响,其中,土壤含水量能够解释其71-74%的变异。土壤类型(结皮和去结皮土壤)同样显著影响土壤碳通量(P<0.01),但是影响过程依赖降雨。在无降雨条件下,生物结皮处于休眠状态,结皮的存在能够减缓土壤碳的释放。降雨驱动结皮直接参与土壤碳交换过程,小量降雨后(2mm),结皮层光合不及自身呼吸,导致生物结皮土壤碳通量表现为碳释放。当降雨强度等于或者超过5mm后,结皮总光合大于结皮呼吸和下层土壤呼吸之和,生物结皮土壤碳通量表现碳吸收。并且,降雨强度越大,碳吸收能力越强。结皮层的光合固碳和自身呼吸调控着土壤碳通量的流向和流速。整体上,生物结皮全年净固碳量为4.21-6.27 gCm-2,可以抵消土壤总释放碳的11%~13%。  最后,考虑到生物结皮广泛的分布面积以及结皮层的碳交换主要受降雨驱动,而其碳交换过程深刻影响土壤碳循环。在全球气候变化背景下,荒漠地区降雨将发生很大改变,理解生物结皮碳交换过程对土壤碳通量的影响有助于我们清晰地认识荒漠生态系统碳平衡。
其他文献
随着全球能源危机、环境污染等问题的出现以及传统集中式大电网发电模式自身缺陷的暴露,分布式发电技术得到了飞速发展。分布式发电技术包括风力发电技术、光伏发电技术、燃料电池技术及生物质能发电技术等。分布式电源,尤其是风电分布式电源的接入,改变了传统配电网辐射状的结构、潮流分布,可能会导致传统保护不能正确动作。本文将研究风电DG接入对配电网电流保护的影响与分区保护方案。首先,建立了风电DG的模型,对其运行
自阮元提出南北分派和北碑南帖之后,书学界一直认为,从阮元、包世臣、刘熙载到康有为体现了碑学从提出到完备和总结的过程,而帖学是作为碑学的对立面存在的。这一看法不但有
生物土壤结皮是由蓝藻、荒漠藻、地衣、苔藓和土壤中微生物,以及相关的其它生物体通过菌丝体、假根和分泌物等与土壤表层颗粒胶结形成的十分复杂的复合体,与维管束植物覆盖一样
本研究以绿色木霉(Trichoderma viride)为菌种,优化了液体发酵的产纤维素酶培养基,研究了液体发酵过程发酵体系中可溶性蛋白质及还原糖等化学组分的变化及其与纤维素酶活(以
为了研究COP1和HY5在光调控拟南芥基因表达过程中的功能和相互作用,该研究利用含约9,000个EST微阵列芯片检测了它们的表达谱.该研究发现COP1在暗中调控的基因约占整个基因组
该研究以小麦(Triticum aestivum L.)雌蕊、棉花(Gossypium hirsutum L.)和蜀葵[Althaea rosea(L.)Cav.]胚珠作为实验材料,通过对Steedmans wax切片的DAPI(4,6-diamidino-2-p
为了研究极度高甘油三酯血症对凝血系统及血液流变学特性的影响及其机制,利用体细胞基因转移方法,救治原本在出生后两天内全部死亡的LPL基因敲除纯合子小鼠,建立了一种由脂蛋
水是荒漠生态系统的首要限制因素,影响着生态系统生态过程的各环节。在干旱区,降水和地下水是植物可利用的两个重要水源。降水在灌丛干扰下以穿透雨和树干茎流的方式到达地表,影
为了获得高功率密度和快速的瞬态响应速度,开关变换器的开关频率不断提高,但高速开关动作将产生大量的的电磁干扰(Electromagnetic Interference, EMI),对开关变换器及其周边电子设备的正常工作产生严重影响。双频率调制技术(Bi-Frequency Modulation Technique)在瞬态响应速度和EMI特性方面具有优越性,本论文对其进行了详细的研究。论文以工作在断续
永磁直驱风电系统由于结构简单、技术可靠和维护成本低等优点,得到了广泛的应用。其结构中虽然省去了双馈风电系统中故障率较高的齿轮箱,但全功率变流器也是故障率很高的部件之一,研究其故障诊断监视系统对风电系统的安全稳定运行具有重要意义。目前的风电故障诊断监视系统仍有人力耗费大、受环境影响大、诊断不准确等问题需要解决。本文以风电变流器主电路拓扑结构为二极管整流器+升压斩波器+电压源型PWM逆变器的永磁直驱风