宫内发育迟缓大鼠WT1和IGF2 DNA甲基化与肾脏发育和功能的关系研究

来源 :复旦大学 | 被引量 : 0次 | 上传用户:kassi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
各种研究显示宫内营养不良可以持续改变机体的结构、功能和代谢,引起宫内发育迟缓(intrauterine growth retardation, IUGR),而且可能通过“发育程序化”途径,成为成年期发生高血压、冠心病,胰岛素抵抗、2型糖尿病、肥胖和慢性肾脏病等的重要危险因素。肾脏是“发育程序化”的重要靶器官,流行病学资料显示,IUGR胎儿肾脏体积较正常胎儿明显缩小同时肾小球数目明显减少;生后长期随访发现,IUGR组肾小球滤过功能较正常组明显降低而蛋白尿和终末期肾脏疾病的发生率明显增高。我们课题组前期动物实验同样发现,IUGR新生鼠肾小球数目明显减少,且生后随访中蛋白尿和高血压的发生率明显增高。但是“发育程序化”肾脏疾病的确切分子机制目前仍未阐明。研究报道Wilms瘤1基因(WT1)和胰岛素样生长因子2(IGF2)是影响肾脏发育的重要基因,对肾单位的发生和肾小球的滤过功能起到了重要作用。我们前期研究业已证实,IUGR新生大鼠WT1基因表达明显下调。因此,我们推测在“发育程序化”肾脏疾病的发生过程中,WT1和IGF2可能是引起生后肾小球数目减少等肾脏病变的关键分子。在发育过程中,由于表观遗传可调控基因启动子区并且维持其作用在机体的整个生命过程中,确保其转录表达和终止的方式,扰乱这一过程则可能成为改变胚胎表型的分子机制之一。胚胎发育时期,DNA甲基化状态对环境因素尤为敏感。在“发育程序化”过程中,宫内环境可以通过影响DNA甲基化状态,参与疾病的发生。那么,在IUGR大鼠肾脏中是否确实存在DNA甲基化模式的异常改变,这一问题的探讨将有助于更好的了解“发育程序化”的发病机制,并且在疾病发生前期寻找可能的预警标志和治疗靶标。在本文第一部分实验中,我们采用孕期全程低蛋白饮食法(6%低蛋白等热卡饲料)建立IUGR大鼠模型,选择新生鼠仔出生体重在正常对照组平均体重-2SD以下者为IUGR组。对照组以孕期常规饲料(含22%蛋白质)饲养至自然分娩,所生新生鼠仔作为正常对照组。选择新生期、生后4周和生后12周作为研究节点,每组每个时间点各取6只大鼠,Real-time PCR方法检测肾脏WT1和IGF2mRNA水平以及甲基转移酶DNMT1、DNMT3a和DNMT3b mRNA水平;MassARRAY(?)EpityperTM定量甲基化检测方法检测WT1和IGF2基因启动子区DNA甲基化状态;分别于4周龄和12周龄时检测各组大鼠24小时尿蛋白肌酐比和血肝肾功能、血脂及血糖水平;于12周龄时采用光镜和电镜观察肾组织形态,并在光镜下计数肾小球数目。结果发现,IUGR新生鼠体重明显低于正常大鼠,肾小球数目也显著降低。光镜下显示IUGR新生鼠肾脏皮质区较薄,生肾区所占的比例较大,提示IUGR新生鼠存在明显的肾脏发育延迟。新生期IUGR大鼠肾脏WT1的表达显著低于正常组,而IGF2的表达则出现升高的趋势,定量甲基化结果显示,此时WT1启动子区的甲基化水平显著升高,与其mRNA的表达水平呈明显相关性。而IGF2基因的甲基化水平则未出现显著的变化。同时我们也看到新生期DNMT1和DNMT3a的表达明显升高,并与WT1基因DNA甲基化水平呈线性相关。因此我们推测,WT1的降低可能直接或通过减弱对IGF2的抑制使其表达升高间接导致输尿管芽分支异常,影响后肾胚芽的分化,并最终导致肾单位减少。而]3NMT1和DNMT3a调节的WT1启动子区甲基化水平的增加是WT1表达减少的重要机制。当IUGR大鼠进入成年期后,肾脏WT1和IGF2的表达显著高于正常组,且该组大鼠出现了明显的肾功能异常,主要表现为尿蛋白肌酐比显著增高,并伴有尿素氮、尿酸和胱抑素-C的增高。电镜下还可观察到其足细胞出现了明显的足突融合。定量甲基化分析显示,WT1启动子区甲基化水平显著降低,并与其mRNA的表达水平呈明显相关性,DNMT1和DNMT3b也出现了明显降低。但与新生期相同,IGF2基因启动子区甲基化状态依然没有明显的改变。以往认为,IUGR儿童肌肉力量不足,能量需求高,为达到生长追赶,应给予高蛋白饮食,但快速的生长追赶也可能增加发生成年期代谢疾病的风险,如肥胖等。我科课题组有关IUGR新生仔鼠生后高蛋白饮食干预的研究发现,高蛋白饮食不仅不能纠正生后肾小球数目的减少,反而加重高血压和蛋白尿的严重程度。因此,有人提出,生后饮食限制可降低肥胖的发生率。研究表明,IUGR大鼠生后低蛋白饮食可增加其糖耐量和胰岛素敏感性。那么,生后蛋白限制,以维持其与宫内环境一致,会不会改善IUGR胎儿的肾脏损伤情况?还缺乏相关的研究报道。目前有关IUGR胎儿生后的合理营养干预及营养干预对肾脏的影响和可能的影响机制仍未完全阐明。为探讨IUGR大鼠生后不同的营养干预对其不同发育阶段肾脏WT1和IGF2基因DNA甲基化状态的影响及其与肾脏功能的关系,我们进行了第二部分的研究。对IUGR新生鼠生后分别给予常规饲料(含22%蛋白质,IUGR+N组)、高蛋白饲料(含30%蛋白质,IUGR+H组)和低蛋白饲料(含6%蛋白质,IUGR+L组)喂养直至12周龄,同时设立正常对照组(孕期常规饲料饲养至自然分娩,所生新生鼠仔生后给予常规饲料喂养直至生后12周龄)。与第一部分同样的方法检测各组大鼠新生期、4周龄和12周龄肾脏WT1和IGF2mRNA水平,分析这两个基因启动子区DNA甲基化水平,以及DNMT1、DNMT3a和DNMT3b mRNA水平,同时检测4周龄和12周龄24小时尿蛋白肌酐比、血肝肾功能、血脂和血糖等生化指标。结果显示,高蛋白喂养的大鼠体重增长并不理想,虽然第4周也出现了生长追赶,但至成年期体重始终低于对照组和生后正常喂养组。同时我们发现,高蛋白喂养大鼠4周龄时即出现尿蛋白肌酐比明显升高,至大鼠12周龄时,其尿蛋白肌酐比仍然高于其他各组,并且血尿素氮和尿酸水平已显著升高。而低蛋白喂养组大鼠生长发育明显受限,生后没有出现生长追赶,虽然其血总蛋白和白蛋白水平明显低于其他各组,但尿蛋白肌酐比及肾功能情况却与对照组无显著差异,优于生后正常喂养和高蛋白喂养组。Real-time PCR结果显示,至成年期两组营养干预大鼠WT1和IGF2的表达均较对照组出现了明显的增高,其中,低蛋白组IGF2表达的增加十分显著。与第一部分不同的是,此时两种不同的营养干预组肾脏WT1和IGF2基因的甲基化水平均显著降低,这种变化从4周龄一直持续到12周龄,并且在12周龄时,两组甲基化水平已显著低于生后正常喂养组,这与WT1和IGF2mRNA的高表达呈明显的线性关系。高蛋白喂养大鼠肾脏I)NMT1在12周龄时表达显著降低,与该时期两个基因的低甲基化状态呈显著相关性,而三种甲基转移酶在低蛋白组大鼠肾脏都没有出现明显改变。综上所述,不良的宫内环境可影响WT1的甲基化状态,继而导致其异常表达,而不同发育阶段WT1和IGF2的异常表达可能参与了IUGR大鼠肾小球的减少和成年期蛋白尿的发生。IUGR大鼠生后高蛋白喂养可通过改变启动子区甲基化状态调节WT1和IGF2的异常表达,从而造成肾脏损伤;而生后保持宫内环境一致的蛋白喂养虽能减轻肾脏负担,亦可增加通过启动子区甲基化水平调节WT1和IGF2异常表达,增加肾脏损伤风险,且不利于生长发育。因而,我们应在现有研究基础上继续探索新的营养干预方式使IUGR胎儿既保证生长发育又不增加肾脏负担,从而更好的保护肾功能。
其他文献
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们羽 制作:陈恬’#陈川个美食 Back to yield
期刊
早产是指胎儿在怀孕未满37周或259天的提前分娩,它是围产医学最重要的问题之一,同时也是新生儿发病和死亡的主要原因之一。随着围产期医学技术的进步,早产儿的生存率已经大大
<正>鲁迅作为我国伟大的文学家、思想家、革命家,一生著作等身,可是他只写了一部回忆性散文集《朝花夕拾》。其中,温情的记忆中有亲人、有恩师、有朋友,甚至在五篇中(共十篇)
致读者 本刊是以普通消费者和质量技术监督战线职工为主要读者的综合指导兼科普型通俗刊物。为了提高趣味性和文化性,内容更加贴近百姓,走进生活,从2002年开始,增设“名著连载”栏目
宫殿百年纪念广场作为伯明翰市中心最大的公共广场,却面临着缺少凝聚力、可识别性和氛围等问题。Mecanoo的设计使广场发生了改变,集纪念性。文化性和娱乐性于一身。这些宫殿般
生产车间布局的合理性直接影响物流效率、生产成本、生产安全及生产效率等方面,运用系统设施布局法(SLP)和层次分析法(AHP)对传统的生产车间进行布局优化,充分发挥车间的生产
中国神话对中国传统文化的思想影响非常深刻.从研究文化发生学的角度去探讨中国神话,如传统文化中的天人合一有机整体观、重社会轻个体与重人伦轻人欲的道德思想等,其思想源
本刊讯 2016年9月5日,20国集团领导人第十一次峰会在杭州落下帷幕。G20杭州峰会是我国近年来举办的级别最高、规模最大、影响最深远的主场外交活动,办好峰会对提升我国国际影
背景和目的呼吸道合胞病毒(respiratory syncytial virus,RSV)是全世界婴幼儿下呼吸道感染首位病毒病原体,人群普遍易感,早产儿、骨髓移植病人、先天性心脏病以及免疫功能不
从各种飞行安全事故的统计中可以看出,由于起落架而造成的事故占了很大的比例,而减震系统又是起落架的重中之重的主要部分。本文主要介绍组成减震系统的两个重要组成:减震支