高维超纠缠态的制备及应用研究

来源 :中国科学院研究生院 中国科学院大学 | 被引量 : 0次 | 上传用户:Kfreshman
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在量子信息科学中,纠缠态作为重要的资源,广泛的应用于量子计算、量子隐形传态、量子超密编码、纠缠纯化及量子保密通信等许多领域。利用二维量子系统构成的量子比特可以实现多种量子通信协议。但是随着人们对通信中包含信息量的越来越高的需求,许多研究开始关注如何将二维的量子比特扩张到更高的维度(qudit)。在最近的研究中,三维量子态(qutrits)及更高维度的纠缠态已经在实验室中被成功的制备出来。与量子比特相比,qudit拥有更好的量子特性及在应用中的优势。例如,高维纠缠态表现出了更强的非局域性和抗干扰性。此外,高维纠缠态还可以明显的增进量子保密通信的安全性。虽然制备任意维度的纠缠态在理论上都是可行的,但是实验制备高维纠缠态仍面临许多现实的困难。与通常的纠缠态相比,超纠缠态在量子通信中也有着重要的应用,在局域的量子操纵上有着明显的优势。   在本文中,我们提出了一个制备两光子高维超纠缠态的实验方案,并基于该纠缠态提出一种量子密钥分发协议,该协议可以明显增加保密通信的效率。
其他文献
受激布里渊散射(SBS)作为一种光学非线性效应,自被发现以来在非线性光学领域成为一个广泛的研究课题。随着激光器作为研究手段的不断深入,对SBS一些特殊性质的研究和利用也越
表面等离激元是金属自由电子的一种元激发,用来描述电子在外界激励下振荡的集体运动行为。由于基于表面等离激元的器件具有能够突破衍射极限等性质,表面等离激元学,作为一门既独
电流变液体是一种将微米或纳米的高介电颗粒悬浮在低介电绝缘液体中的智能材料。过去,人们用来解释电流变液的机理模型有纯介电模型和水桥模型等。近年来,一类新型的电流变液
该文的工作分为四部分.第一部分:以C(α,n)O、(α,n)Mg为双脉冲中子源,对于3M、初始金属丰度Z=0.02的内禀TP-AGB星,采用无分叉s-过程反应通道及较新的中子俘获截面,结合97年
RFQ冷却聚束器RFQ1L是中国科学院近代物理研究所正在研制的重核及核结构研究谱仪SHANS的一个重要组成部分。RFQ1L的主要任务是能高效率地收集和冷却次级束流,使其具有非常小的
学位
近年来,大气压冷等离子体在生物医学领域的应用研究已经成为国际上等离子体科学与技术领域的研究热点之一。本文研究了不同的大气压冷等离子体装置的基本放电特性,探究了其在癌
光学显微成像与光谱技术因对我们理解生物结构、揭示生命现象发挥着重大作用而倍受关注。传统的光学显微镜受衍射极限和光源的限制,分辨率已达到极限。激光出现以后,二次谐波、
近年来,半导体量子线的光谱学特性从实验和理论研究上均取得较大进展。研究者已制备出矩形、T型、V型截面的量子线。实验结果表明,半导体量子线激光器相对于目前较为成熟的半
量子计算作为物理科学和计算机科学的交叉学科,在最近十几年来发展迅速。很多物理体系都被用来构建量子计算系统,其中囚禁在离子阱中的冷离子具有囚禁时间长,相干时间长,可扩展等