ZIF-67衍生碳纳米管基复合结构的构建、改性和超级电容器性能研究

来源 :山东大学 | 被引量 : 0次 | 上传用户:qianpu1234
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了解决能源短缺问题和实现碳达峰、碳中和目标,世界各国政府投入巨大人力、物力和财力来开发清洁、可持续的新能源。随着风力、水力、地热能和潮汐能等清洁可再生能源不断取代石油、煤炭、天然气等化石能源,亟需开发研究出高效安全的能源中转和储存设备。超级电容器因其具有长循环稳定性、高功率密度等优势,受到了广大科研工作者的青睐。但是由于普遍存在能量密度较低的问题,仍需通过大量的研究以开发出兼具高功率密度和高能量密度的超级电容器电极材料。ZIF-67作为MOFs材料的一个子系列,不仅具有高孔隙率、高比表面积和孔道可调控等特点,同时也表现出无机沸石材料的高稳定性(热稳定性和化学稳定性),因此在储能方面有巨大的应用潜力。但是由于ZIF-67导电性差,限制了其在储能方面的实际应用。本论文针对ZIF-67导电性差的问题,通过碳化Cu掺杂的ZIF-67,制备得到DCNTs(Dodecahedron Carbon Nanotubes,表面原位生长出碳纳米管的正十二面体碳),后续通过氧化、硫化以及构建DCNTs@CoNi-LDH核壳结构等方法,获得了优异的电化学储能性能。本论文具体工作如下:(1)采用热处理碳化Cu掺杂ZIF-67的方式,获得了过渡金属单质负载CNTs+石墨碳多级碳网络结构(DCNTs)。通过氧化、硫化处理,分别获得了 Co3O4和CoSx/Co负载CNTs+石墨碳多级碳复合结构。通过各种电化学表征方法证明,氧化和硫化可以改善DCNTs电化学活性差、比电容低等缺点,得到具有高能量密度的电极材料。(2)通过溶剂热法在DCNTs表面高效包覆CoNi-LDH纳米片,制备得到DCNTs@CoNi-LDH复合结构。通过对溶剂热时间和冷却方式的优化,获得了具有大比电容(1 A/g电流密度下比电容为1260F/g)、优秀倍率性能(10A/g电流密度下比电容为1045.44 F/g)和循环稳定性(在10 A/g电流密度下循环5000圈后,容量保留率为83.1%)的DCNTs@CoNi-LDH纳米花多级核壳结构。本研究还进一步探讨了碳纳米管在复合结构中的作用,通过设置同源ZIF-67制备的无碳纳米管核@CoNi-LDH组成的核壳结构作为对比,揭示了储能性能的提升主要来源于碳纳米管穿插在LDH覆盖层内,为LDH表面的储能反应提供了快速的电子输运通道。
其他文献
合金的凝固过程对其宏观性能有重要影响,作为加工过程的母相,液态合金的结构研究对于合金加工及合金设计具有重要意义。液态合金中存在的短程有序结构与中程有序结构对于研究凝固过程的形核至关重要。本文采用从头算分子动力学方法(AIMD),在等温和等过热度两种模式下计算和分析了 Ti-Al合金系的液态结构,自扩散系数和混合焓及形成焓,同时还研究了实用Ti合金Ti6A14V的液态结构,探讨了液-固结构的相关性。
学位
经济长期增长对于发展中国家至关重要,一直是主流政治学和经济学关注的重点问题,也是比较政治学领域的核心议题。在经济增长的政治学解释中,政策选择视角将精英作为影响经济增长的重要因素。从政策选择角度切入,这些分析路径探讨了精英行为对经济增长的影响,其中,精英的逐利心理会让其通过制度建构来获取利益,从而附带促进经济增长;精英的管理角色会让其通过利用现有资源来最大程度地发展经济。但这些解释忽略了国家在经济政
学位
硬质合金作为一种高硬度、高强度和良好耐磨性、抗腐蚀能力的复合材料,被广泛用于高速切削、勘探钻井、矿山开掘等工业领域。为了提高其力学性能,通常使用物理气相沉积或化学气相沉积方法在其表面覆盖一层硬质涂层。由于涂层与硬质合金基体的热膨胀系数不同,致使涂层表面容易产生先天性裂纹,进而在各种重载荷加工和极端恶劣的服役环境中引发裂纹拓展,大大缩短硬质合金刀具的使用寿命。为抑制裂纹扩展并延长刀具使用寿命,新型W
学位
相比于传统移动机器人,爬壁机器人是一种可以在倾斜程度较大甚至竖直二维或三维系统比如墙壁、天花板、悬崖等环境中移动的机器人。通过将移动能力与壁面攀附能力结合,爬壁机器人可以在一些人类以及常规机器人无法展开工作的环境下进行作业。因此爬壁机器人成为近年来特种机器人研究领域的热点课题。根据爬壁机器人使用的吸附方式,可将其分为磁力吸附、真空负压吸附、空气动力吸附、电粘附、机械夹持、以及仿生吸附等类型。但是磁
学位
糖尿病型心肌病是造成糖尿病患者心力衰竭和死亡的主要原因。糖尿病分为Ⅰ型和Ⅱ型,其中高血糖是Ⅰ型糖尿病晚期并发心肌病的主要病理因素。已有研究表明,高血糖能破坏心肌细胞线粒体功能,使其成为活性氧(reactive oxygen species,ROS)和促凋亡因子的主要来源,最终导致心肌细胞的死亡。由于心肌细胞在心脏中占据重要地位,因此心肌细胞线粒体受损成为糖尿病型心肌病的重要病理生理学基础。目前研究
学位
铝/铜异质合金结构件在降低成本、实现轻量化的同时可以做到优势互补,在新能源和电气等行业具有良好的应用前景。然而铝、铜因物理化学性质差异大,采用传统焊接方法难以获得性能优良的接头。而采用常规搅拌摩擦焊(Friction Stir Welding,FSW)对铝/铜异质金属进行焊接时,虽然获得了表面成形良好、内部无缺陷的接头,但仍面临易产生较硬脆的金属间化合物(Intermetallic compoun
学位
土工格栅是一种新型土工合成材料,多用于提高加筋承载面的嵌锁、咬合能力,增强基体的稳固性能,被广泛应用于边坡防护和各种公路、铁路等路面增强等领域,其中应用最为广泛的是塑料土工格栅。随着市场对土工格栅性能的要求日益提高,传统单向和双向塑料土工格栅越来越难以满足实际需求,在这种背景下,多向土工格栅应运而生。随着坦萨公司研制的三向土工格栅进入我国市场,对多向土工格栅的研究吸引了越来越多的关注,多种新型多向
学位
随着经济与社会的快速发展,能源短缺与环境恶化等问题日渐突出,制造业的低碳化转型升级迫在眉睫。镁合金被誉为“21世纪的绿色工程材料”,具有质量轻、高强和易回收等突出优点,在航空航天、轨道交通和汽车等领域的应用前景广阔。镁合耐腐蚀性能较为薄弱,成为限制其大规模应用的主要原因之一。通过塑性成形工艺和热处理,能够改善镁合金的微观组织,实现对其耐腐蚀性能的提升。其中,挤压成形是镁合金型材的一种重要加工方式,
学位
超细铜粉在化学、环境治理和电子等领域具有广泛的应用前景。目前超细铜粉主要采用化学法制备,但复杂的制备流程复杂导致其成本较高,使超细铜粉的应用受到限制。球磨技术是制备超细粉末的一种重要方法,但对于高延展性纯铜,常规球磨过程中容易发生塑性变形和冷焊而无法被高效细化。本文在常规球磨的基础上添加一定数量直径0.5 mm的不锈钢微球作为微细磨料制备铜粉,采用扫描电镜(SEM)、透射电镜(TEM)、XRD、激
学位
高速发展的无线通讯技术使人类社会与其周围的电磁环境密切相关。电磁波的无序过量辐射不仅会干扰各种电子设备,还会危害人体健康并影响人类赖以生存的自然环境。如何在利用电磁资源的同时保证适合人类生存的环境是当今世界各国重视与关注的问题。除此之外,现代战场复杂的电磁环境也使得电磁吸收在军用领域中有着重要的战略地位,在面对以电磁波为媒介的先进探测系统时如何保证武器装备的生存能力也是各国的研究重点之一。在此基础
学位