有机/无机复合硅基气凝胶的结构设计、制备与性能研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:haobishuiduo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为改善硅基气凝胶制备难度大、力学性能差与高温稳定性差等问题,本文基于有机/无机复合的结构设计思路,制备了两种有机/无机复合硅基气凝胶,包括聚硅氧烷/二氧化硅复合硅基气凝胶、聚硅氧烷/莫来石纤维复合硅基气凝胶。分别研究了两种复合气凝胶制备的反应机理,讨论了有机/无机组分比例等对复合气凝胶结构与性能的影响。所制备的有机/无机复合气凝胶具有较高的比表面积、较低的导热系数和较高的力学性能,同时具有一定的高温稳定性。上述结构设计思路提升了硅基气凝胶的综合性能,有助于拓宽硅基气凝胶的应用范围。一方面,以硅酸四乙酯(TEOS)为无机气凝胶前驱体,以聚甲基氢硅氧烷(PHMS)为有机气凝胶前驱体,选取乙烯基三乙氧基硅烷(VTES)为偶联剂,制备了具有低导热率和高抗压强度的PHMS/VTES-Si O2复合气凝胶。本文的研究证明了PHMS/VTES复合体可以通过包覆的方式与Si O2气凝胶颗粒复合,从而能够在保持气凝胶网络结构和不显著降低隔热性能的基础上提升气凝胶的抗压强度和高温稳定性。本文讨论了PHMS/VTES复合体影响复合气凝胶网络结构与隔热、力学性能的机理。当复合气凝胶原料配比为PHMS:VTES:TEOS=1:0.3:5时,复合气凝胶能够在获得最佳隔热性能的同时,具备较好的力学性能,实现隔热与力学性能的平衡。同时,复合气凝胶具有一定的高温稳定性,实现了综合性能的提升。此外,这项工作拓展了复合气凝胶的研究思路,提出了一种引入长链分子和小分子硅烷的复合思路,这一思路对进一步提升硅基气凝胶的力学性能和高温稳定性具有较好启迪的作用。另一方面,以聚甲基氢硅氧烷(PHMS)和四甲基四乙烯基环四硅氧烷(D4Vi)为有机气凝胶前驱体,以环己烷为溶剂,以莫来石纤维为无机增强体,采用溶胶浸渍的方法实现有机组分与无机组分的复合,在铂催化剂的催化下实现交联,通过水热反应制得了聚硅氧烷/莫来石纤维复合硅基气凝胶。本文改进了制备工艺,在常压干燥前使用正己烷对湿凝胶进行溶剂置换,从而改善了常压干燥的效果。本文证明了通过引入无机莫来石纤维这一方法,可以获得具有一定隔热性能、力学性能和较好成形性的有机/无机复合硅基气凝胶。
其他文献
电解水制氢是最具潜力的产氢技术之一。目前商用电解水催化剂主要为昂贵稀少的贵金属及其合金,这大大增加了制氢成本。因此,开发具有高催化活性与稳定性的非贵金属催化剂是氢能产业发展的关键。二硫化钼(MoS2)因具有独特的层状结构以及较高的本征催化活性,被认为是可替代贵金属催化剂的材料之一。但是,2H-MoS2表现为半导体特性,其催化性能受到其导电能力及活性位点数目的制约。因此,本文拟通过不同方法对2H相M
学位
面对日益严重的能源危机,利用水分解制取绿色氢能被认为是最有潜力的解决策略之一。光电催化水分解能够将分布广泛的太阳能转换为氢能储存起来,随后参与到合成氨、化工应用中去,实现清洁能源的循环利用,是目前研究广泛的前沿方法。然而,析氧反应涉及复杂的四电子过程,反应动力学慢,是光电催化水分解的决速步骤。因此,开发高效的光阳极材料对于提升光电催化水分解的整体性能具有至关重要的作用。在众多金属氧化物光阳极材料中
学位
硫化锌因具有理论比容量(572 mAh g-1)高,反应可逆性好及易于制备等优点,在钠离子电池领域受到广泛关注。然而,由于充放电过程中体积变化大,导电性差,限制了其储钠性能。目前将结构设计与材料复合相结合被认为是解决这些问题的一种潜在策略。本文通过一步水热法在中空硫化锌纳米棒表面合成二硫化钼/氮掺杂碳(MoS2-NC)纳米片,通过X射线衍射(XRD)、扫描电子显微镜(SEM)等多项表征分析其生长机
学位
超级电容器由于充放电速率快、工作温度范围宽、使用寿命长等优点,已被成功应用于航空航天、电子产品、混合动力汽车、智能电网等领域。作为超级电容器最重要的组成部分,电极材料在提高器件性能上起着关键作用。常见的电极材料主要有碳材料、导电聚合物、过渡金属化合物及复合材料,其中镍钴基金属化合物具有高的理论比容量和高的电化学活性,然而作为超级电容器电极使用时,仍存在比表面积小、导电性差等问题,其实际容量较低。因
学位
石墨烯(Gr)作为新型二维层状碳材料是金属基复合材料的理想增强相,但其在铜基复合材料中的增强效率远低于理论值,原因是石墨烯与铜基体的界面润湿性差。界面改性是提高石墨烯强化效果的有效途径。本论文采用第一性原理计算研究了Ce、Sc、La、Y及Y2O3改性Gr(001)/Cu(111)界面的原子和电子结构及界面结合性质,并研究了Y及其氧化物(Y2O3)掺杂石墨烯/铜(Gr/Cu)体系的力学性能及断裂机制
学位
光催化杀菌由于具有短时高效、杀菌彻底、毒副作用小等优势,具有极其广阔的应用前景,是目前抗菌领域的研究热点之一。近几年,已经有多种半导体光催化材料被用于抗菌领域。在众多的光催化材料中,二氧化钛(TiO2)由于具有原料来源广泛、制备工艺成熟、光催化效果好、无毒无污染等优点,是目前应用最广泛的光催化剂。但是,单纯的TiO2禁带宽度较大,只能在紫外光的激发下发挥光催化性能。一方面,长时间的紫外光照会对人体
学位
锌-空气电池因理论能量密度高(1084 Wh kg-1),安全可靠,成本低等优点成为最有前景的锂离子电池替代品之一,但较低的功率密度极大地限制了其商业化应用。锌-空电池的功率密度主要受限于电池放电时空气电极阴极氧还原反应(ORR),因此,开发高效的ORR电催化剂十分重要。我们通过模板刻蚀和高温热解法合成了具有分级多孔结构的S掺杂铁-氮-碳(Fe-N-C)催化剂,作为高功率密度锌-空气电池的ORR催
学位
超疏水涂层对水的不润湿性使其在自清洁、抑冰、防腐等领域有着巨大的应用前景。尽管超疏水涂层的研究发展很迅速,但是其距离大规模的工业化应用还有很大的差距,一方面是其与基体之间的结合强度限制,另一方面是其防腐性能的长效性。因此,合成一种具有优良粘结性能和防腐性能的超疏水涂层显得尤为重要。本文开发出了一种具备超疏水能力的涂层制备工艺,研究了所制备涂层对304不锈钢和Q235钢的腐蚀行为,分析了不同环氧树脂
学位
迄今为止,金属Cu是唯一可以直接将CO2电催化产生多种碳氢化合物的金属催化剂。然而,纯铜的CO2电化学还原选择性较差,大大限制了其应用。因此,需要对铜基催化剂表面进行工程设计以调控其电子结构,从而提升目标还原产物的选择性。研究表明,催化剂表面较高价态的Cuδ+往往有利于高能量密度的碳氢化合物的形成。然而,在CO2还原条件下,材料表面Cuδ+位点很容易被还原,使其CO2电还原性能发生衰减,所以维持表
学位
Allvac 718Plus合金是在Inconel 718合金基础上研发的一种新型γ′相强化型镍基变形高温合金,具有出色的高温力学性能和成形性,可弥补Inconel 718和Waspaloy合金服役温度之间的空白,目前已开始应用于航空发动机部件的制造。航空发动机涡轮盘高温运行时承受交变载荷应力的作用,极易引发疲劳变形损伤,因此研究合金的高温疲劳变形行为具有重要的现实意义。本文通过选取Allvac7
学位