高速随机数产生中混沌放大量子噪声的熵增特性研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:yuanyewyew
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随机数广泛用于密码学、数值计算以及通信等数字领域,在大规模数值模拟和信息安全应用方案中,真随机数产生是实现最终性能和可靠性的关键技术。大多数真随机数发生器都是基于物理系统的,物理随机数对于实现信息安全应用中的不可复制性和不可预测性非常重要,其中量子随机数发生器(QRNG)是一种重要的方法,其随机性来源于量子物理的不确定性。在量子随机数生成领域中,连续变量量子随机数发生器因其具有高带宽、鲁棒性以及可芯片化等优势尤具应用前景,但由于边信息、探测增益限制、后处理资源消耗等,以真空态为熵源的方案其安全性及随机数生成速率亟需提升,产生高熵高速的量子随机数便成为当前的研究热点与重点。量子随机数生成的一个重要问题是熵率的评估,熵率是产生不可预测性的速率。我们提出利用混沌放大量子噪声的熵含量,因混沌系统具有初值超敏感、类噪声等输出特性,系统中微观噪声所引起的初始不确定性会被混沌动力学非线性放大并转换成宏观波动信号,长时间后宏观观测值将是不可预测的,混沌系统固有噪声的非线性放大被认为是随机性的来源。本文基于混沌敏感和熵增机制,利用混沌激光快速非线性放大量子散粒噪声,将激光中的微观量子噪声转换为离散宏观态之间的随机跃迁,显著提高系统的量子熵含量。熵含量作为衡量随机序列真随机性的一种量化标准,熵值足够高才能保证随机数应用的高安全性。理论上构建噪化混沌系统系综,利用KLD熵探明噪化混沌系统的收敛特性,并研究延迟反馈激光系统中噪声放大的统计特性。以混沌光场高频量子模分量起伏噪声作为熵源部分,显著提高连续变量量子随机数生成系统的量子熵含量,并利用h cp(ε,τ)熵实现内在噪声混沌放大的熵率量化,探明混沌激光系统由内在噪声到混沌收敛稳态的熵增路径。实验上研究了基于零差探测系统混沌放大量子散粒噪声的熵增特性,利用熵率对熵增过程进行一致性评估,并通过协调系统各可控参数以实现量子熵含量最大化,进而通过提取混沌光场宽带量子态频模的方法,实现量子熵源的高效利用,以产生高熵高速可信任的量子随机数。
其他文献
人们对于化石燃料的使用会造成大量的CO2产生,而这些持续排放的CO2会引起温室效应以及生态危机,因此将CO2催化转化为具有价值的化学品和燃料是减少对于化石燃料的依赖以及实现碳中和目标的有效途径。其中,逆水煤气变换(RWGS)反应作为CO2加氢反应中的主要步骤,由其生成的重要的平台分子CO可进一步发生增值转化反应而受到广泛关注。但是基于RWGS反应的热力学特性,高温条件下有利于反应的正向进行但是催化
学位
随着量子随机数在保密通信等领域的快速发展,为了保障随机数的产生质量和产生速率,对熵源质量提出了更高要求,也即需要对熵源特性实现更为精确地表征。目前针对熵源的评测主要对时域、频域的宏观动力学特性进行分析,如综合利用频谱、自相关、时序、李雅普诺夫指数、互信息、熵值等多方面信息;此外针对量子统计特性的研究也已开展,但对于关系相空间信息的准概率分布还有待深入研究,它为熵源的精确表征及在保密通信中高质量熵源
学位
随机数被广泛应用于密钥生成、电子签名等信息安全领域,是加密系统的安全保障。安全的随机数具有随机性,是不可预测的,其随机性主要来源于熵源,因此用于产生随机数的熵源必须是安全的。在实际应用中,经理论证明的熵源也不应该被默认为是安全的。因为外部攻击、噪声以及构成熵源的物理器件存在的非理想特性等因素都会危及熵源的安全性,进而破坏随机数的不可预测性,因此针对熵源的安全性评估具有重要意义。目前,熵源的安全性评
学位
由于城市交通设施的不断完善,城市地下管线的分布也逐渐朝着复杂化趋势发展。在工程维护与施工过程中,由于地下管线的分布资料年久而造成关键信息丢失的情况时有发生。这导致在进行工程作业时,经常出现管线挖断等事故,轻则造成停水停电,重则导致爆炸等严重事情发生。因此,精确探测地下管线位置以及刻画管线分布对于城建发展至关重要。探地雷达是通过收发高频电磁波获取地下未知目标信息的无损探测技术,具有高效、安全、简单等
学位
近年来,假冒伪劣产品被频频爆出,如何验证产品真伪成为电商供应链中亟待解决的重要问题。产品溯源技术能够全方位展示产品信息,是检验产品真伪的重要手段之一。目前常见产品溯源系统容易出现单点故障问题,并且隐私信息安全性较低。区块链技术具有去中心化、防篡改等特性,使其能契合产品溯源场景。然而若直接将区块链技术与现有溯源系统相结合,虽然一定程度上能够解决现有溯源系统存在的问题,但区块链自身缺陷以及溯源认证方式
学位
学位
分布式电源可通过接入微电网中对可再生能源进行消纳与利用,这一获得清洁低碳能源的方式如今得到了世界各国研究人员的广泛关注。为了解决分布式电源接入传统电网时因其波动性和间歇性产生的一系列问题,在实际工程中,储能系统常与分布式电源同时接入微电网系统,以确保微电网稳定可靠地运行。本文围绕分布式电源以及储能系统在交流微电网下输出有功和无功功率的分配问题展开研究,对逆变器接入微电网时所用的下垂控制方法进行分析
学位
近年来,由于传统化石燃料引起能源危机和环境问题的加剧,迫切需要开发新型可再生能源,其中太阳能成为最合适的候选者。太阳能光伏与光催化制氢是太阳能利用的两种重要形式,在能源结构调整和生态文明建设方面具有重要意义。钙钛矿太阳能电池是一种很有前途的光伏技术,具有很强的商业竞争力,其中空穴传输材料能有效调节电池界面势垒,促进空穴传输和收集,降低电荷复合,优化钙钛矿层与电极界面,改善钙钛矿光吸收层的性质,在钙
学位
探地雷达(Ground Penetrating Radar,GPR)是一种利用电磁波对地下目标进行探测的无损勘探技术,它根据电磁波在不同介质分界面处发生反射、折射等现象来反演地下目标的信息,实现目标的检测和识别。GPR起初通过对一维或者二维数据的解译来进行目标的定位与识别,但这种方法依赖于操作人员的专业知识水平和工程经验。而凭借GPR成像技术,则可直观显示地下目标体的特征信息,便于对目标的解译,具
学位
光电探测器是光电探测系统的核心部分。第三代半导体SiC有着宽带隙、高击穿电场、高导热率、热膨胀系数小、高饱和电子漂移速度、抗强辐射、化学性质稳定等特性。因此不少研究者致力于研究基于SiC的光电探测器。在SiC光电探测器中,有平面结构的SiC光电探测器和垂直结构的SiC光电探测器。光电探测器阵列是由众多垂直结构的SiC光电探测器探测单元组成,其每个探测单元能分别输出电流。信号采集和处理电路是光电探测
学位