基于深度学习的主动脉CT增强扫描图像合成研究

来源 :西北大学 | 被引量 : 0次 | 上传用户:zjxtlgj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来对于图像合成的研究已经取得了不小的进展,但是在一些医学领域的图像合成问题上依然存在着不足,其中包括对主动脉夹层增强扫描图像的合成研究。在主动脉夹层的临床诊断中,CTA图像诊断优势要远强于平扫CT图像。但是CTA图像所采用的增强扫描存在一定的弊端,因而利用深度学习技术构建网络模型,将平扫CT图像合成为CTA图像,对医学影像辅助诊断具有重要意义。本文先后提出了基于通道注意力机制的主动脉夹层增强扫描图像合成方法以及基于主动脉分割图像的合成方法。主要内容如下:(1)制作图像合成数据集。对受试者分别采集胸腔CT平扫图像和增强扫描后的CTA图像,将图像人工分类为存在和不存在主动脉夹层病症用例两类。针对器官运动和人体呼吸导致的图像空间位置上不一致问题,采用医学图像工具对采集的CT平扫图像和CTA图像进行配准对齐。为了排除其他器官干扰使模型更有针对性,对采集的图像制作多组主动脉标签,并通过分割网络获得多组仅包含主动脉区域的成对CT和CTA图像。(2)结合主动脉夹层病症的特征,构建了一种基于通道注意力机制的主动脉夹层增强扫描图像合成模型。利用Fcd Net模块能有效获取信息的特点,所提方法能够很好捕捉主动脉夹层撕裂边缘等信息,提高图像合成的质量。最终通过对比实验,验证了提出的方法在主动脉夹层的合成问题上具有更好的效果。(3)构建了基于主动脉分割图像的合成模型。本文对主动脉分割后的图像提出了基于级联生成对抗的主动脉夹层增强扫描图像合成方法。其核心思想是在通道注意力机制的基础上,构建一个级联生成器以及双重判别器组成的网络,进一步提升合成图像质量。为了证明模型中各个模块的有效性,本文进行了对应的消融实验。最终实验结果表明本文提出的方法对比其他模型,有更好的合成效果。
其他文献
近年来,互联网汽车共享服务的迅速发展满足了人们对于舒适、便捷的交通方式的需求,但大量的网约车加剧了城市的道路拥堵、环境污染和资源消耗。网约车拼车服务使一辆车能够同时服务多位出行路线相似的乘客,减少非必要车辆出行,缓解交通压力。但是,现有的动态拼车匹配算法忽视了潜在的乘客出行需求,导致车辆的拼车载客率较低。因此,研究潜在乘客的出行规律并提出基于出行需求预测的动态拼车匹配算法具有较大的意义。此外,在乘
气敏传感器是传感器领域中的重要组成部分,对推动智能感知监测、实现万物互联具有极其重要的作用。虽然半导体气敏传感器已广泛应用于各个领域,但目前依然存在诸多问题以待解决,如工作温度较高、气体选择性较差,低响应度等,故而开发工作在室温环境高选择性和高响应度的气敏传感器尤为重要。本论文从气敏传感材料研制的角度出发,采用两步微波水热法合成了可在室温环境对NO2气体具有高度选择性的Bi2S3/MoS2复合材料
图像分类是大数据及智能信息时代下应运而生的产物,已经成功的应用到商品分类、美食分类、旅游景点分类、视频分类、图书分类等各种场景。目前,大部分图像中都包含多个感兴趣对象,且需要多个标签对这些对象进行标记,这类图像分类任务即多示例多标签学习(MIML)。大部分MIML深度学习架构更多关注如何在空间维度里改进网络,然而在实际应用此类方法并不能有效提高图像分类精度,其原因在于这些架构没有考虑到一个标签有多
随着智能终端的普及,休闲类游戏因其玩法简单易上手的特点,同时由于越来越多优秀的人工智能算法的应用极大丰富了游戏趣味性与益智性,逐渐成为一种老少皆宜的娱乐方式。而对游戏开发者而言,虽然市面上出现的流行游戏引擎已经在很大程度上降低了游戏开发难度,但是在面临不同的游戏需求时,开发人员仍然需要根据具体游戏玩法进行引擎层之上的结构设计与开发。针对以上问题本文对常见休闲类游戏游戏进行结构分析,提出基于可扩展状
目前,全球正面临着人口老龄化,并由此引发了一系列严峻的社会问题。随着家庭结构模式趋于小型化,生活节奏不断加快,养老问题变得格外突出,对社会的发展带来严峻考验。智能机器人的出现为上述问题的解决提供了一种新的思路,本文基于机器视觉算法和机器人行为控制算法的研究,设计并实现了一个视觉引导下的机器人行为控制系统。本文主要工作包含:(1)基于深度相机的物体识别与定位。首先拍摄了953张包含44种物体的室内场
粒计算是Zadeh教授提出的一种模拟人类思考问题方式进而解决大规模复杂问题的有效方法.粒计算的一个重要内容是信息粒化,信息粒化可以简单理解为在给定粒化准则下得到一个粒层的过程,它是粒计算的必要过程.在利用粒计算思想求解复杂问题的过程中,会依据一定的粒化准则将复杂问题划分为多个子问题,进而对子问题进行描述和处理.所以,通过恰当的粒化准则来获取合理的粒描述,可以令决策者对粒的理解更加透彻,进而有助于复
在大数据时代,诸多机器学习算法对数据降维等数据处理方法有了更高的要求,主成分分析作为一种重要的数据降维算法,在经典机器学习中占有举足轻重的地位,其量子化算法在2014年由Lloyd首次提出,使其在量子计算机上的实现具备了理论基础。量子主成分分析作为量子机器学习中的重要算法,近年来得到诸多科研学者的青睐,目前发展的q PCA算法可以直接提取较大的特征成分,减少采样量,但也存在一些不足:一是估计不准确
中国陕西省南部地区具有丰富的寒武纪早中期(535百万年前)宽川铺组微体化石,盛产四方塔型壳、早期动物胚胎、原牙形刺等各类微体化石,有助于探寻寒武纪时期动物的起源以及大爆发的成因,是十分重要的研究方向。但是早期的研究人员因技术手段的限制主要依靠人工显微镜筛选的方法寻找微体化石。微体化石数量庞杂,但因为具有研究价值样本稀少,人工手段存在误差,并发现效率低下,极大影响了寒武纪早期生命进展。基于上述研究背
传感技术是当今世界高新技术研究热点之一,而光纤传感技术以其测量精度高、便于组网、抗电磁干扰等特有优势近些年得到飞速发展。光纤传感是将待测参量的变化与光纤内光学参量变化建立起关系,通过对传感器信号的解调,反演出外界待测物理量变化的传感技术。解调技术是光纤传感系统中的核心技术,航空航天、机器人和国防工业等应用场景对集成化和小型化的光纤传感解调系统提出了迫切的需求。本论文研究了基于绝缘衬底上的硅(Sil
图像修复属于数字图像处理中的一个重要的研究分支,它是指将有缺损的图像通过技术手段复原,使其尽可能与原图像相同。目前图像修复在医学、安保、军事以及电影等行业中都有广泛应用,因此有很重要的研究价值。而近年来,深度学习尤其是生成对抗网络的出现,给图像修复研究提供了更好的技术和手段。边缘是数字图像中一个重要的信息,它可以在一定程度上可以反映物体的信息,确定物体的形状和边界。而在图像修复中,经常出现由于无法