双金属复合板变厚度冷轧工艺研究

来源 :燕山大学 | 被引量 : 0次 | 上传用户:hmilymemo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
双金属变厚度复合板材(Cladded Longitude Profile Plate,CLP板)是以双金属层状复合板为原料,利用变厚度轧制技术生产的一种新型功能材料。CLP板既保持了传统单金属变厚度板材节材减重的优点,又可通过选择合适的覆层金属材料满足耐磨性、防腐蚀、耐高温等特殊功能化要求,实现低成本与高性能的完美结合,具有广泛的应用前景。本文以非对称双金属复合板变厚度异步轧制技术为对象,采用有限元模拟与实验相结合的方法,进行趋厚轧制和趋薄轧制变形区内组元金属变形行为、压下率分配、轧后翘曲行为研究,建立复合界面组元金属协调变形工艺条件,优化轧制工艺。通过对试验用铜铝层状复合板材进行扫描分析,确定了复合界面层厚度;并进行拉伸试验获得复合板覆层铜与基层铝的单质材料真应力应变曲线,通过剥离实验和剪切实验获取了铜铝复合板复合界面结合强度,并基于ABAQUS软件及其Cohesive内聚力单元建立剥离实验过程有限元模型,反演确定了复合界面断裂能。基于内聚力模型建立了双金属复合板变厚度轧制过程有限元模型,分析了变厚度轧制过程中轧制变形区内各层金属应力、应变状态及的影响规律,以及趋厚轧制和趋薄轧制过程中轧制力与中性角的变化规律,研究了不同组元金属层厚比以及轧制力的变化规律,及在不同异速比、异径比对轧后翘曲和复合界面组元金属变形协调情况及其对界面结合状态的影响规律。设计并加工制造了变厚度异步轧制实验轧机,并开展双金属变厚度异步轧制实验,验证了有限元模型合理性。开展不同层厚比、压下量及不同异速比、异径比轧制实验,分析轧后界面强度,结合有限元分析结果建立双金属复合板变厚度异步轧制界面变形协调条件
其他文献
未来移动网络数据传输量将呈现爆炸式增长,而地面通信资源紧缺,急需向空间拓展新的通信维度,否则将造成通信性能瓶颈等问题。为了解决该问题,可以利用移动性高和具有视距传输
片上网络(Network-on-Chip,NoC)作为一种新的通讯架构,相对于传统总线具有并行度高、扩展性强等特点。片上网络启用流量拆分带来了多路径路由功能,显著地增加了链路带宽。然而,
不平衡数据分类问题在数据挖掘领域占有重要的地位,如何有效处理不平衡数据已然成为当前的一个研究热点。采用传统的分类模型时,数据的失衡往往造成分类面的偏倚,导致难以得到令人满意的分类效果。现今,国内外学者相继提出了多种用于解决类不平衡问题的方法,但并没有充分考虑到数据的分布对分类模型性能的影响。针对传统模型出现的偏倚问题,本文基于代价敏感学习的思想,充分讨论了数据分布特性对分类器性能的影响。同时,本文
进化计算(Evolutionary Algorithms,EAs)是一种随机搜索范畴的优化算法,可以用来解决多个目标且相互冲突的多目标问题。在现实世界中有许多这样的实际问题,如工业调度,控制设计等。然而,这些问题可能随时间发生变化。这对EAs是一个挑战性的问题。因此,EAs是一个重要的研究课题。有多个目标互相冲突并且它们随着时间发生变化,这类问题叫动态多目标优化问题(dynamic multi-o
技术侦查措施在司法实践中已经应用广泛,并且借助科技优势和运行方式的不易被察觉特点,成为刑事侦查的重要手段,但是《刑事诉讼法》中关于技术侦查的规定适用范围、对象、程
无人水面船在自主执行任务时需要对周围的环境进行实时感知,通过检测前方视野范围内是否存在障碍物来进行避障,视觉传感器具有成本低、分辨率高等优点,因此,本文采用视觉传感器获取无人船周围的动态环境信息,并基于图像处理技术对水面目标进行检测,水面目标检测技术的研究对无人船的自主导航具有十分重要的现实意义。针对水面目标检测正确率低、实时性差的问题,本文设计基于水天分界线的目标检测方法。方法主要研究了三部分内
作为5G的候选技术,非正交多址(Non-Orthogonal Multiple Access,NOMA)和多输入多输出(Multiple-Input Multiple-Output,MIMO)分别实现了信号在功率域和空间域的复用,有效地提
周围神经损伤可导致严重的瘫痪和神经功能障碍,是临床上的常见疾病。周围神经中神经束的三维(3D)可视化技术可提供详细的周围神经内部的空间信息,在周围神经损伤修复术中根据
互联网时代下,科技的不断发展打破了传统经济的空间限制,全球产业结构逐渐改变,商业模式发生了质的变革和飞跃,多种新模式应运而生,使得企业经营环境的多变性及竞争性愈发突
呋咱为一种含有C、N、O的五元杂环,是非常有效的能量结构单元。研究表明,化合物含有呋咱环,其能量密度至少比常规含能材料高15%-20%。同时,氨基呋咱和氧化呋咱衍生物是药物化学中的重要前体,已被用于许多药物前体的制备,如血小板聚集抑制剂、NO供体前体药物、心血管疾病药物、多种激酶抑制剂等。4-氨基-3-氰基呋咱可用于构建复杂的多呋咱高能密度材料和潜在的药物分子,其合成研究在呋咱化学中有较为重要的意