基于粒子群算法的复合式变风量空调系统节能方法研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:xianghh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
众所周知,空调在建筑中占据了很大部分能耗,提高空调节能性对减少建筑能耗具有重要意义。目前,舒适性空调大多采用最大温差送风方式。过低的送风温度会造成出风口表面结露,而且,送风量过小会使得室内空气品质变差。然而,提高传统型空调出风温度会使得电加热功耗增大,系统性能系数降低。热湿季节,排风的温湿度较低,多冷凝器系统即能回收排风显热能量又能回收部分冷凝散热量。水的蒸发冷却作用驱动力为焓差,用间接蒸发冷却器充当排风的能量回收装置,不仅能够回收全热能量,而且不会增加一次空气含湿量。综合上述两种系统的优点,本文研究了一种二级间接蒸发冷却与蒸汽压缩式循环相结合的复合式空调系统,用来改善室内热舒适性和提高空调系统节能效率。为了研究复合式空调系统的节能潜力,本文做了以下几方面工作:(1)搭建了二级间接蒸发冷却系统与双冷凝器系统组成的复合式空调数学模型。(2)分析送风温差对双冷凝器空调最佳的蒸发器与再热冷凝器面积比的影响,以及双冷凝器空调和传统型空调在热湿环境下的性能系数(COP)。(3)分析露点蒸发冷却器的湿通道空气质量流量比与制冷量之间的关系,比较三种间接蒸发冷却系统的排风能量回收能力。(4)使用新型密度峰值聚类算法(DPC)建立空调能耗相对误差与工况簇数量之间的二元回归关系,得到一种用于减少能耗计算工作量的负荷聚类算法。(5)采用粒子群算法优化长沙市某办公室中复合式空调器的生命周期成本(LCC)。通过对空调结构参数优化后发现,复合式空调器全年能耗量为3566.7 k W,比传统型空调器和双冷凝器空调器分别节省了1794.6 k W和672.2 k W。它的最小生命周期成本为24413.68元,投资成本增加了1202.6元,回收周期为2.98年。随着送风温差的减小,复合式空调的节能效率增大。与传统型空调器相比,送风温差3~9℃范围内,复合式空调器的全年节能效率为55.93~16.76%,高于双冷凝器空调的51.37~2.49%。
其他文献
随着经济全球化的进一步发展,越来越多国家(地区)为推动当地贸易的发展,纷纷开始建设自由港。自由港属于特殊的世界自由经济区,不受惯常的海关管辖,且拥有独特的税收制度与税收政策,其中,离岛免税政策就是在自由港实施的一种特殊的税收优惠政策。离岛免税政策也是海南自由港实施的核心税收优惠政策,被赋予了重大意义。2020年是海南自由港正式建设的开局之年,2021年更是离岛免税政策实施的第十年以及十四五规划的开
高温合金因其性能优越,在服役工况恶劣的大型工业领域被得到广泛应用,但目前对其的研究还不够完善。本文以镍基高温合金GH3536锻件作为原材料,通过电火花线切割、真空电子束焊、抛光等加工工艺,将其制成厚度为1.5mm的标准焊接试验试样,展开试验研究。通过对试验结果处理分析,有以下结论:(1)GH3536合金锻件母材晶粒呈现不规则多边形形状,分布均匀且密集,而焊缝区域晶粒尺寸大于母材晶粒,呈长条状;(2
轻量化、电动化、智能化是汽车技术发展的主要方向,提高材料强度可在保证安全的前提下通过减薄材料厚度实现轻量化。强度超过1500 MPa的热冲压钢是目前强度最高、应用最多的车身用高强度钢。Al-Si镀层技术可避免板料在热冲压成形过程中的高温氧化和脱碳,同时确保成形后的零件具备较好耐蚀性,目前Al-Si镀层板在热冲压钢应用占比超过60%。但是,现有Al-Si镀层热冲压钢板弯曲断裂应变还有待提高以满足进一
镍基高温合金具有良好的高温强度,抗氧化性,抗腐蚀性能等综合性能,广泛的应用于航空、航天和核电等领域。镍基高温合金主要通过固溶强化和沉淀强化来提高材料的高温强度,但是当服役温度大于1000℃时,γ’相的溶解会降低材料的高温强度,限制了高温合金的使用范围。氧化物弥散强化可进一步提高镍基合金的高温强度。本文采用机械合金化和热等静压烧结方法,制备出ODS-Ni20Cr4.5AlxTiyZr合金。系统的研究
为降低成本,资源多元化是镍电解精炼的发展趋势。现有金属镍生产的原料主要来源于矿的冶炼,但镍合金的回收已逐渐成为其资源的一部分。废的飞机发动机叶片镍基单晶高温合金含镍在50%以上,可作为较好的镍资源进行回收。由于火法冶炼过程中会有很多有价元素损失,目前科研人员一直在努力开发湿法工艺以减少有价元素的损失。本论文提出将废的飞机发动机叶片DD5、DD6镍基单晶高温合金作为资源进行湿法处理回收,研究其溶解液
氧化铝生产工艺近年来发展迅速,但由于开采效率低、氧化铝提取效率低等问题,导致我国氧化铝资源保有量大幅减少,到目前为止,中国可采储量为8.3亿吨,占全球总储量的3%,与此同时由于我国氧化铝生产工艺的不完善,导致了赤泥的钠碱含量较高,进一步造成一系列经济问题和环境污染问题。为跟随国家铝土矿资源发展规划,解决生产氧化铝工艺带来的一系列衍生问题,东北大学特殊冶金与过程工程所提出了后加钙-钙化碳化法生产氧化
作为一种二维碳材料,石墨烯具有优异的机械、电学、光学、热力学和化学性能,同时还可以与其他材料复合得到功能复合材料,因此在材料、电子、样品预处理以及传感等领域中得到了广泛应用。本论文制备了两种不同的石墨烯基复合材料,并对他们在双酚A(BPA)萃取分离与传感中的应用进行了系统研究。论文首先利用石墨烯具有大的表面积的特点,通过单体介导的方式将共价有机骨架材料TpBD修饰在氧化石墨烯(GO)表面得到TpB
等通道转角挤压(Equal Channel Angular Pressing,简称ECAP)技术是目前制备超细晶材料最有效、最快速的手段之—,它是通过剧烈塑性变形来达到细化晶粒和提高材料力学性能的目的。本文采用通道夹角为120°模具成功实现纯钛的室温ECAP6道次变形,并结合室温冷轧和道次间液氮冷却的低温冷轧的复合变形来获得不同压下量的超细晶试样。此外,本文采用通道夹角为90°的模具,在350℃条
过氧化氢(H2O2)是有广泛应用价值的化学试剂。工业中H2O2的生产主要是蒽醌氧化法,但此生产过程只能大规模运行,并且存在排放废气、废水的问题。与之相对的一种更加安全高效的合成方法就是电化学氧还原反应合成方法(ORR)。但由于金属催化剂的制造成本高,非金属纳米碳材料以高丰富度、高电化学稳定等特性被应用于电催化氧还原制备H2O2。在此过程中,调节电化学氧还原反应路径和提高H2O2产量是研究重点。本文
为完成某型燃气轮机压气机新设计转子叶片高周疲劳储备分析,采用基于叶尖定时法的激光非接触测量方法对该级转子叶片进行了振动应力测试,并结合理论计算和转子叶片高周疲劳极限试验,获得每一只叶片的高周振动疲劳强度储备,创新性地一次性完成了某级压气机新设计转子叶片振动疲劳性能的全面评估。研究表明:理论计算得到的叶片1阶弯曲共振转速为4 393 r/min,实测叶片在机组全部运行工况下的共振转速区间为4 276