基于激光汤姆逊散射的级联弧等离子体实验研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:voidemort
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
级联弧等离子体具有高密度、高粒子通量和稳态运行等特点,在薄膜沉积、材料表面改性、纳米材料合成和磁约束核聚变等领域都有着广泛的应用。因此,需要对级联弧等离子体的相关物理参数进行精确地诊断研究。作为最基本的两个等离子体参数,电子密度(ne)和电子温度(Te)极大地影响着级联弧等离子体中的其他参数和局域热力学平衡(Local Thermodynamic Equilibrium,LTE)状态。所以对级联弧等离子体ne和Te进行精确的诊断对于深入理解其内部复杂的物理机制和优化其应用具有重要意义。在等离子体诊断技术中,激光汤姆逊散射是公认的一种测量ne和Te最准确的方法。该方法具有非侵入、高时空分辨率和不依赖于等离子体LTE状态等优点。基于此,激光汤姆逊散射是精确测量级联弧等离子体ne和Te的理想诊断技术。本论文建立了激光汤姆逊散射系统,诊断了不同放电条件下,尤其是加入不同反应气体后,级联弧等离子体的ne和Te,发现了级联弧等离子体中电子行为新的变化规律。另外,由于激光汤姆逊散射技术测量出的Te不依赖于等离子体是否处于LTE状态,而发射光谱测得的电子激发温度(Texc)只有当等离子体处于LTE状态时才等于Te。本文提出了通过对比Te和Tec研究级联弧等离子体的非LTE特性的方法,研究了电子对级联弧等离子体LTE状态的影响。主要研究内容如下:在第二章中,分别建立了单光栅光谱仪激光汤姆逊散射(Single Grating Spectrometer Laser Thomson Scattering,SGS-LTS)系统和三光栅光谱仪激光汤姆逊散射(Triple Grating Spectrometer Laser Thomson Scattering,TGS-LTS)系统。SGS-LTS 系统主要由单光栅光谱仪和激光子系统构成,具有相对简单,容易操作等优点。但是单光栅光谱仪不具备陷波滤波功能,导致SGS-LTS系统无法消除强烈的杂散光信号,而这些杂散光信号往往可以将微弱的汤姆逊散射信号完全湮没。为了抑制杂散光信号,本论文研制了具有窄带陷波滤波功能的三光栅光谱仪,并将三光栅光谱仪与激光子系统等相耦合共同构成了TGS-LTS系统。相比于SGS-LTS系统,TGS-LTS系统具有更高的探测灵敏度,电子密度探测下限可以低至1×1017 m-3,从而可以被应用到精确诊断较低密度等离子体的ne和Te。另外,本章还对级联弧等离子体发生装置进行了介绍。在第三章中,采用SGS-LTS系统对级联弧氩等离子体的ne和Te进行了精确的测量。同时,采用发射光谱测量了级联弧氩等离子体的Texc。通过对比Te和Texc,对级联弧氩等离子体的非LTE特性进行了研究。激光汤姆逊散射诊断结果表明在典型运行条件下,级联弧氩等离子体ne的范围为1019 m-3~1020 m-3,Te的范围为0.3 eV~0.6 eV;随着放电电流、气体流速和背景气压的增加,ne和Te均增加。当放电电流和气体流速增加时,等离子体源的注入功率增加,ne和Te增加,下游等离子体ne和Te升高。背景气压的升高会导致下游等离子体体积减小,等离子体径向输运减弱,电子被约束在中心区域,ne增加。当ne增加时,电子与氩离子之间的三体复合(three-body recombination)反应增强。三体复合反应中氩离子被复合,一部分内能转化为电子的动能,Te升高。在级联弧氩等离子体中,Texc总是要高于Te,但是随着ne的增加,Txxc逐渐接近Te。这是因为级联弧氩等离子体属于复合等离子体(recombining plasma),氩原子能级布居数小于其在Saha-Boltzmann平衡条件下的能级布居数,即氩原子能级处于欠布居。随着ne的增加,电子与氩原子之间的碰撞增强,同时三体复合反应增强,氩原子能级布居数增多,逐渐接近Saha-Boltzmann平衡条件下的氩原子能级布居数,即等离子体逐渐接近LTE状态,所以Texc逐渐接近Te。在第四章中,采用TGS-LTS研究了氮气对级联弧氩等离子体ne和Te的影响以及对等离子体LTE特性的影响。同时定性地提出了氮气对ne、Te和等离子体LTE影响的物理机制。在背景气压较低时(150Pa和300Pa),随着氮气比例的增加(0%-10%),ne从1020m-3急剧降至1018m-3。当背景气压较高时(500Pa和800Pa),ne随着氮气比例的增加先迅速下降而后略有升高。电子与氮分子离子之间的解离复合(dissociative recombination)反应会消耗大量的电子,导致ne急剧下降。而亚稳态氮分子之间的缔合电离(associative ionization)反应可以产生新的电子,当缔合电离反应占主导时,ne增加。随着氮气比例的增加,Te呈现出先增加后降低的变化规律。这是电子与氮分子之间的超弹性碰撞反应和碰撞激发反应共同作用的结果。电子与处于较高振动激发态的氮分子之间的超弹性碰撞可以将氮分子的一部分振动能转化为电子的动能,Te升高;而电子碰撞激发基态氮分子会导致电子损失动能,Te降低。加入氮气后,Texc更加偏离Te。这是因为加入氮气之后,ne急剧降低,电子与氩原子之间的碰撞减弱,氩原子能级布居数来源减少,更加偏离Saha-Boltzmann平衡条件下的氩原子能级布居数,级联弧等离子体也更加偏离LTE状态。在第五章中,采用TGS-LTS系统诊断了级联弧氩氧混合等离子体的ne和Te,研究了氧气对ne和Te的影响。实验结果发现当氧气比例从0%增加至10%时,ne迅速下降,下降幅度可以超过两个数量级;而Te变化很小,只有在背景气压较高且放电电流较低时,在较高氮气比例处Te出现下降。ne的下降主要是由氧分子离子与电子之间的解离复合反应引起的。另外,由于氧气是一种电负性气体,所以形成负离子(O2-和O-)的反应也会消耗一部分电子,进一步加剧了ne的减少。由于电子与较高振动激发态氧分子之间的超弹性碰撞和电子与处于基态氧分子的电子碰撞激发相互达到某种平衡,通过电子通过超弹性碰撞反应获得能量与通过电子碰撞激发反应损失的能量相当。所以,Te随氧气含量的增加变化很小。当背景气压较高且放电电流较低时,在较高氧气比例条件下,基态氧分子数密度较高,电子碰撞激发反应占主导,所以Te会出现明显的下降。
其他文献
在非光滑复合优化中,有一类重要问题:两个函数和的极小化问题.许多的实际应用问题,例如:信号处理、多商品流、优化控制等,它们都可以抽象地表示或能转化为求两个函数和的极小化问题.因此对此类问题如何建立有效的求解方法,成为许多学者关注的课题.本文主要关注一类非光滑复合优化问题,包括:具有凸约束的凸函数和的极小化问题;非凸函数与凸函数和的极小化问题;非光滑双函数和的均衡问题.提出求解这类非光滑优化问题的各
太阳能作为一种清洁可再生能源,对其高效、深度开发利用并实现其建筑一体化,对有效解决我国建筑领域能源短缺和环境污染问题具有重要意义。建筑冬季需要采暖、夏季需要空调、全年需要供应电力和生活热水,面对建筑多样化的能源供应需求,目前现有的太阳能光热利用和光伏发电技术,无论是组件的光电或光热转换效率、还是功能单一的组件结构形式和太阳能利用系统形式等,都无法满足上述建筑多种用能需求,且存在着组件占地面积大等问
碳化硅颗粒增强铝基复合材料(SiCp/Al)是以铝或铝合金为基体,以碳化硅脆硬颗粒为增强相的一种金属基复合材料,具有高比强度、高比刚度、低密度和优越的热学性能,在航空航天、电子通讯、汽车等领域均具有广阔的应用前景。但是,高强度增强相SiC颗粒的加入使得SiCp/Al复合材料的切削加工变的极为困难,并会加速刀具磨损,降低工件加工精度,严重限制了该材料的广泛应用。其中,在SiCp/Al复合材料切削过程
量子热力学是量子力学和经典热力学的交叉学科,近年来引起了人们的广泛关注。量子热力学不仅可以在量子层面上检验宏观热力学定律,而且也可以指导设计具有特殊功能的量子热器件。本文主要以低维量子系统为研究对象,利用开放量子系统理论,线性算符微扰论和全计数统计方法,研究系统稳态时的热流及热涨落,从而设计具有不同功能的量子热器件。本论文由以下六章组成:第一章,首先简单回顾了量子力学的发展史,然后介绍了量子热力学
钛合金/不锈钢复合构件具有良好的耐腐蚀性、减重和低成本等优点,实现二者的可靠连接可以发挥两种材料的综合性能优势,具有重要的应用价值。钛和钢的物理化学性能差异较大,导致钛/钢焊接接头内易生成脆性金属间化合物并产生较大残余应力,真空钎焊是解决以上难题的有效方法。钛/钢真空钎焊存在钎料设计理论不完善、接头强度低、钎料合金组元与接头微观组织及性能关系不清楚以及界面反应机理不明晰等问题。本文以TC4钛合金/
碳纳米材料具有促进植物生物质量增加和调节基因表达上调、进而刺激植物生长方面的能力。植物生长过程中,钾是主要的必需元素之一,影响喜钾植物的产量和品质。纳米碳可促进喜钾植物生长,并提高植物中钾含量,但缺乏深入的机制探讨。因此,本论文通过研究纳米碳促进BY-2细胞钾吸收机制及对细胞造成的氧化应激效应,从而为利用纳米碳刺激植物生长提供理论依据,为农业增产提供指导。主要研究内容如下:首先,利用电解石墨法制备
许多天然与人造材料具有粘弹性性质,粘弹性材料相关的力学问题研究具有重要的实际工程应用价值。由于时间相关的本构关系,加之复杂的几何形状和边界条件,粘弹性问题的解析求解十分困难,研究并发展行之有效的数值方法十分必要,也是一个颇值得探讨的理论课题。本文基于比例边界元法(Scaled Boundary Finite Element Method,简称 SBFEM)开展了确定性/不确定性粘弹性正/反问题的数
结构优化设计作为一种有效的结构/材料设计工具,已被广泛地应用于包括航空航天、汽车、船舶等工业装备中,并取得了一些重要的研究成果。结构优化设计可以分为尺寸优化、形状优化和拓扑优化,其中拓扑优化是结构优化设计的核心,它能够帮助设计师和工程师们在概念设计阶段就提出新颖高效的设计方案,决定了装备结构的最终拓扑、形状和性能。面对传统拓扑优化方法中,设计变量数过多、结构的几何约束难以直接施加、所得结构的几何信
含能材料,也称高能量密度材料,是炸药、发射药和推进剂等的总称。含能材料受到外界作用时,会持续发生剧烈化学反应,并在短时间内释放出巨大能量,不仅被广泛应用在矿石开采、土建工程等国民经济领域,更重要是在航空航天、国防等领域。因此,含能材料的基础研究对国防工业和国民经济生产具有重要的科学意义和应用价值。本论文基于密度泛函理论,分别研究了不同色散修正方法对典型含能材料的适用性;RDX、PETN和HMX的高
高阶张量在信号处理、数据挖掘、神经科学、计算机视觉等领域中都扮演着重要角色.因此,从高阶张量中提取出有用信息是一项非常重要的科研任务.张量分解、张量低秩逼近则是完成这项任务的重要手段.本文从新的角度出发,给出了与已有定义不同的张量特征值、张量分解、张量秩一逼近方法.并对一类特殊结构张量—M张量的H特征值求解作出了研究.本文的主要研究思路和取得的成果如下:1.矩阵特征值在矩阵分析中发挥着重要作用,张