氦辐照条件下钨材料表面微纳尺度的损伤研究

来源 :清华大学 | 被引量 : 1次 | 上传用户:zhongming328
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钨(W)是未来核聚变堆托卡马克(Tokamak)装置中面对等离子体材料(PFMs)的主要候选。其服役环境苛刻,会受到高热流及高束流等离子体的辐照。氦(He)是氘(D)氚(T)核聚变反应的产物,广泛地存在于装置腔室中的等离子体之内。聚变堆偏滤器部分存在严重的He等离子与W的表面相互作用。本文利用He离子、He等离子体对W材料进行辐照,并通过自行搭建的微纳尺度热测试平台分析了He辐照条件下W材料的损伤行为,对损伤结构热导率下降行为及微纳尺度损伤机理进行研究。研究搭建了表面损伤层热导率测量设备,建立了评价材料损伤程度的方法,并结合微观损伤机理的研究,分析了热导率下降机理。He离子在室温条件下辐照,损伤层热导率下降了1个数量级,并且随着辐照剂量/损伤程度的增加而减小。损伤层热导率下降是由于He离子辐照引入了大量He团簇,强烈地散射了电子,导致W材料中电子-电子作用增强,平均自由程下降。He等离子体辐照使得W材料热导率下降了2个数量级,并且随着辐照温度、剂量的增加而下降。其下降机理一方面是电子受到较强散射作用,传热受到抑制,另一方面是由于在W表层产生了较多的He泡,使得W损伤层变为多孔结构,进一步抑制了传热。研究揭示了He辐照条件下W表面损伤结构的形成演化机理。中低温辐照条件下,W材料表面形成纳米尺度损伤结构,存在取向依赖性。W材料近表层10 nm内形成了严重损伤层,损伤层He泡长大过程中,容易形成{001}面,并由于温度场改变导致的应力梯度优先在面内生长,使得大尺度He泡形状具有各向异性,因此在不同取向晶粒上产生了平行于<001>方向的迹线。高温条件下,W表面产生了绒毛结构。该结构同样具有取向依赖性,随着辐照表面温度的上升,He泡迁移能力增强,取向依赖性减弱。热导率下降导致的温度场变化影响微观结构演化过程。损伤W材料经过瞬态热流再服役,发生了熔化阈值降低和熔化行为加剧的现象。由于瞬态热负荷的热作用深度较浅,使得热量集中于表面区域,表层亚微米尺度损伤层热导率的下降会使表面温度升高,导致损伤表面更容易发生熔化、再结晶,严重影响W材料的再服役行为。损伤W的热导率下降行为与其再服役性能相吻合。热导率可以作为PFMs性能的关键评价指标,对于未来评价材料损伤程度、预测服役寿命有指导意义。
其他文献
随着薄膜生长技术的快速发展,类似于石墨烯的二维材料,例如硅烯,磷烯,硼烯,先后在实验上被合成出来。它们的单层二维材料中存在丰富而重要的电子和光学性质,使得它们被认为在很多领域具有潜在的应用价值,例如可以应用于下一代纳米半导体器件,太阳能电池材料以及化学催化等领域。大量的实验和理论计算显示通过引入外部调控,例如表面吸附,替代掺杂和施加应力,可以有效的改变这些纳米材料本征的性质。在本论文中,我们主要通
高波教授在1998年得到了范德瓦尔斯势-C6 r6的解析解后,建立起了中性冷原子碰撞的量子亏损理论。该理论只需少量参数就可以解析描述任意分波的低能散射行为和共振态附近的相互作用,因此极大的方便了我们理解和处理冷原子系统中的高分波相互作用。本文始终围绕量子亏损理论来处理冷原子物理中的超冷碰撞问题,包括超冷原子玻色爱因斯坦凝聚体中的偶极自旋翻转损耗过程,零能阈值附近的Feshbach共振和形状共振的特
最近几年,物理学家们对多体手征费米子体系的宏观反常输运现象,产生了极大兴趣。为了描述这样的手征体系(非平衡态现象),一个自然选择是,关于相空间分布函数的输运方程。虽然目前,这方面的理论框架已经趋于成熟,但是仍然存有一些问题,例如输运方程的洛伦兹协变性和坐标系的依赖问题。本文,从协变、规范不变的维格纳函数出发,运用半经典展开方法,对方程做了系统性的展开,得到了一阶极限下(O(h)),手征费米子的完整
量子色动力学(QCD)的低能标行为由非微扰效应主导,以致我们对其理解远远不够。本论文利用大型强子对撞机上LHCb实验采集的质子-质子(pp)对撞数据,研究了粲夸克偶素的产生机制和Bc介子的性质,以加深对QCD的理解。高能pp对撞中粲夸克偶素的产生一般可以因子化为粲夸克对的产生和随后的强子化两个过程。前者可用微扰QCD计算,后者为非微扰过程,需要用非微扰方法处理,依赖于实验结果作为输入。利用积分亮度
本文从理论上研究了偏振光极化纯度结构的几何解释及其与材料介质的相互作用。首先,提出了用极化纯度指数-去极化指数(PI4D-P△)平面偏振光散射测量的物理实现图。随后,利用N维极化代数对平面波和任意波偏振态的极化纯度结构进行了推广。其次,在纯度(PI4D-CP)空间的三维纯度指标中,给出了纯度-去极化关系与极化源信息的几何表示。第三,利用这些图形表示法研究了某些生物介质偏振光散射的完全极化行为。提出
在极端情况下强相互作用物质的性质研究是高能核物理领域的主要课题。在相对重离子对撞机(RHIC)和大型强子对撞机(LHC)上完成的实验项目的目标之一就是产生和观测夸克胶子等离子体。夸克胶子等离子体是由夸克和胶子组成的短暂存在的热力学体系。虽然已经有信号暗示在重离子碰撞中形成了物质的解禁闭态,但是要研究夸克胶子等离子体的性质还是非常困难。因为在实验上并不能直接探测到夸克胶子等离子体,只能通过分析末态强
负离子通常是通过复杂的电子-电子关联效应使得一个额外的电子束缚在一个中性的体系上而形成的。与中性或者正离子中电子被库仑势束缚不同,负离子中的额外电子是由短程势束缚的,其强度比库仑势衰减得更快。这种短程势的作用使得负离子只能形成很少的束缚态,典型的是只能形成基态或是几个能量最低的精细结构。由于这种新奇的结构,负离子在电子关联效应的实验和理论研究中一直受到人们的重视。电子亲和势(Electron Af
电压门控钠离子通道控制着钠离子的跨膜内流,负责启动可兴奋细胞的动作电位。它在生物的心脏节律调节和神经信号传导中发挥着重要的作用。电压门控钠离子通道的基因突变可能会引发心血管系统和神经系统等方面的功能障碍。在电压门控钠离子通道激活时,跨膜电压的变化会引发VSD的构象变化,它随后会引发孔道结构域的开放并因此允许钠离子的流入。这一过程的原子级别的细节信息是研究者们关注的重点。本项工作中,我们分别在叠加力
移动粒子半隐式法是一种适用于不可压缩流体的无网格数值模拟方法,被广泛地应用于核工业领域、海洋工程领域、机械工程领域、生物工程领域等。移动粒子半隐式法从提出至今的二十多年里得到了长足地发展,并且在不同的领域都取得了显著的成绩。但是相比较于非常成熟和完善的网格法,移动粒子半隐式法中至今仍然存在不少缺陷,这也是导致其无法大规模商业推广的根本原因。本文针对移动粒子半隐式法目前存在压力振荡问题进行了系统地研
核糖体是一种存在于所有细胞中的核酸蛋白复合物,负责蛋白质的翻译。真核核糖体的成熟是一个极为复杂并且高度动态的过程,包括rRNAs的转录、修饰、折叠与加工以及核糖体蛋白的合成与组装。同时存在76种不同的snoRNAs与超过200种组装因子参与核糖体组装全过程的调控。这些组装因子包括作为支架或分子伴侣的结构蛋白以及含有广泛生化活性的蛋白例如GTP酶、AAA-ATP酶、ATP依赖的RNA解旋酶与激酶。此