基于纳米切削方法的二维材料尺寸调控技术研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:xxcdejingcai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自从2004年石墨烯于实验中第一次被发现以来,石墨烯、二硫化钼(Mo S2)、硒化锡(Sn Se)以及黑磷等二维材料受到了极大的关注。二维材料在单层或少层的情况下表现出了与其体材料完全不同而又极具研究前景的物理化学性质。二维纳米材料表现出的优异光电性质和直接带隙现象均受到原子层数和厚度的调控。目前制备二维材料的方法均无法精确获得指定层数的材料样品。本课题组此前提出了基于AFM的厚度可控逐层机械减薄黑磷的方法。在此基础上,本文对其他二维材料展开了AFM纳米切削机械加工的研究。论文完成的主要工作包括:1.较为系统的论述了典型二维材料的研究现状,二维材料制备方法的发展现状以及基于AFM的纳米操纵和黑磷减薄的研究现状。通过对二维材料不同制备方法优缺点的比对,确定了本文的研究路线。2.提出了基于天平的探针法向弹性常数针尖无损标定的方法,设计了探针标定时的施力结构。分析了探针反向及正向弯曲标定时的受力行为,给出了结果补偿系数。搭建了基于参考梁的探针横向弹性常数标定系统,设计了横向观测光路和探针夹持器。利用有限元方法分析了探针的纵向和横向变形行为,依据仿真结果对标定时的误差进行了分析。3.系统分析了不同二维材料的机械加工机理。搭建了AFM纳米切削的软硬件平台。探究了本征二维材料单点下压试验中AFM探针与材料表面的相互作用并得到了材料可被加工的下压力阈值;探究了对本征硒化锡单线切削时切削碎屑的特征,在实验中验证了二维材料的层状结构;探究了本征硒化锡的面加工工艺。4.研究了掺杂硒化锡的基于机械加工的尺寸调控效果。探究了单线切削试验中探针与材料表面的相互作用并得到了减薄掺杂硒化锡的下压力阈值;探究了切削速度和切削矢量间隔对面加工效果的影响;探究了切削碎屑的清除方法,对加工表面的碎屑进行了清除;利用纳米切削方法在材料表面加工出圆形、三角形和台阶。
其他文献
钻孔设计方案评价是钻孔设计过程中的一项重要环节,开发钻孔设计方案评价系统主要目标是降低方案评价人员的工作量,提高钻孔设计方案的质量,具有一定的实用价值。本文首先详细阐述了研究课题的背景和意义,分析了钻孔设计方案评价系统的国内外发展现状;研究统计学相关理论并确定系统主要的开发技术;分析系统的建设目标,根据建设目标梳理系统总体的业务流程,从而挖掘出系统的功能需求和非功能需求;根据用户需求分析对系统进行
液化天然气(LNG)储罐是液化天然气产业链中重要的组成部分,液化天然气储罐的国产化具有重要意义。9%Ni钢(9Ni钢)是制造大型LNG储罐的最主要材料之一。尽管我国国产9Ni钢材的研制已较成熟,但与其配套的镍基焊材仍大量依赖进口,其中一个问题是国产9Ni钢镍基焊材熔敷金属强度和塑性不能同时达标。针对该问题,论文首先采用机器学习方法分析了部分合金元素对镍基焊条熔敷金属力学性能的影响程度;随后,根据机
瞬变电磁井间涡流激发的二次场响应可用于井间剩余油的探测。为更好地服务剩余油探测,本文提出基于全空间几何因子理论的瞬变电磁井间勘探方法,研制大功率发射系统和瞬变电磁井间多深度点测量系统,通过系统完成实验,获得瞬态响应波形,并对涡流激发的响应波形进行分析并总结实验规律。本文对瞬变电磁响应与全空间几何因子进行分析,研究不同激励源的响应和横向、纵向微分几何因子,提出井间勘探地电模型,研究二次场响应信号及其
近年来,由于纳米技术的迅速发展,环境敏感型纳米载体引发了人们的关注。与传统纳米载体相比,环境敏感型纳米载体能够靶向病灶部位并响应病灶微环境,在病灶组织或细胞内定时定点地释放药物,降低正常组织与细胞的药物摄取,具有增效减毒的优势。本文设计了两种具有活性氧(reactive oxygen species,ROS)响应断裂的双苯硼酸单体,即3-硼酸基苯甲酸(4-硼酸基)卞醇酯(CHPBA)和反式丁烯二酸
尺寸效应和残余应力是影响材料压痕力学行为的两个关键因素,传统的弹塑性力学尚未考虑二者的影响。鉴于它们的重要性,近年来在传统力学的理论框架下对二者的研究成为固体力学的热点问题之一。因此,本文围绕这两个基本点对材料压痕力学行为展开了系列研究,主要工作如下:首先,开展纳米压痕实验的理论研究工作。从理论层面讲,对尺寸效应的研究,较为完善,而对残余应力的研究目前大多局限于实验方面和数值解方面。从理论和计算上
本文针对核聚变包层模块候选结构材料低活化铁素体/马氏体钢(Reduced-activation ferritic-martensitic steels RAFM)和 316L 奥 氏体不锈钢的异种搅拌摩擦焊接工艺(Friction stir welding,FSW)进行了研究,获得了成型良好、无缺陷的接头。利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)表征和分
纳米颗粒作为一种经济性好且环保的纳米材料,具有体积小、比表面大等特点,常被作为润滑添加剂应用在摩擦学领域。然而,目前实验测试技术仅能够深入原子、分子尺度揭示纳米颗粒产生的微观现象,对于纳米颗粒的摩擦润滑作用机理尚不清楚。本篇论文主要以纳米颗粒作为研究对象,借助分子动力学模拟方法,从纳米尺度上揭示纳米颗粒在摩擦润滑中的作用机制,为纳米流体润滑中减摩抗磨机制提供了一定地理论依据。本文基于纳米尺度Cou
物体之间的摩擦不仅会消耗能源,同时长时间的摩擦会导致磨损加剧从而造成失效,如果能够有效的减少物体之间的摩擦不仅可以减少有效功的损耗,同时也能延长失效时间。研究表明石墨烯和四氧化三铁粒子均具有良好的润滑性能,由于纳米粒子自身的特性使得其在润滑油中难以稳定分散,这会影响其良好的摩擦学性能,所以本文采用了几种不同的改性方法对石墨烯负载四氧化三铁粒子进行了表面改性,并对其摩擦学性能进行了研究。首先,采用液
三明治结构广泛用于航空航天和交通运输领域。飞机通常在潮湿的环境中工作,密封的六边形蜂窝芯材使得凝聚冷却的水分无法被排出,长时间下大大降低了蜂窝结构的力学性能。目前受折纸启发的折叠芯材已得到广泛地研究,由于开放通道的存在避免了水分积累的问题。并且通过将片材折叠成三维结构大大降低了制造成本。但是折叠芯通常在压缩载荷下的能量吸收较低。因此,避免水分积累并提高折叠芯的能量吸收是目前亟待解决的问题。本文通过
单晶碳化硅作为典型的第三代半导体材料,凭借其优异于传统硅材料的高击穿电压、高热导率等物理特性,在高温、高压、高频、抗辐射、大功率等电子传感器件的研发制备中得到广泛应用,是航空、军事、核能和民用尖端技术中不可或缺的重要材料。但是碳化硅硬度高、脆性大等特点,为单晶碳化硅的加工制备带来很大挑战,限制了碳化硅相关研究技术成果的转化。因此,研究单晶碳化硅加工机理,来改善其加工工艺,实现单晶碳化硅高精度低损伤