论文部分内容阅读
试验以老化燕麦种子为材料,研究其种胚细胞和线粒体超微结构、抗氧化系统及脂质过氧化作用的变化,通过分析比较其种胚细胞及线粒体生理反应的差异,以期从细胞和线粒体水平探究燕麦种子的老化机制。另外,试验还通过分析种胚线粒体结构与功能的变化,研究AsA和GSH处理以及PEG引发对老化燕麦种子修复的生理变化,以期通过劣变种子的修复反应揭示燕麦种子的内在劣变生理响应。获得主要结果如下:以含水量为4%、10%和16%的燕麦种子为材料,分别在45。C老化0(CK)、8、16、24、32和40d,然后分析其发芽率、种胚细胞超微结构、抗氧化酶及脂质过氧化的变化。结果表明:随老化时间延长,燕麦种子发芽率及种胚细胞超微结构的完整性均降低,且下降程度与种子含水量有关。含水量为4%和10%时,老化初期种胚细胞SOD和CAT活性要比APX敏感,其SOD、CAT、APX和MDHAR活性在老化32到40d时显著下降(P<0.05),其DHAR和GR活性在老化初期增加。含水量为16%的燕麦种子在老化8-40d时其种胚细胞抗氧化酶活性及H202和MDA含量逐渐下降,同时其种胚细胞超微结构也严重损伤。以含水量为4%、10%和16%的燕麦种子为材料,分别在450C老化0(CK)、8、16、24、32和40d,然后分析其种胚线粒体超微结构、抗氧化系统及脂质过氧化的变化。结果表明:含水量为4%的燕麦种子线粒体抗氧化能力高于含水量为10%和16%的燕麦种子。线粒体抗氧化能力和MDA含量与老化燕麦种子种胚线粒体膜的完整性有关。而且线粒体SOD仅在老化初期发挥清除H202的作用,在燕麦种子老化过程中MDHAR和DHAR对AsA再生的催化的作用要大于GR。以含水量为10%的燕麦种子为材料,在450C老化0(CK)、8、16、24、32和40d后,分析比较种胚细胞和线粒体抗氧化酶活性及H2O2和MDA含量的差异。结果表明:线粒体H202积累和各种抗氧化酶活性下降是导致种子活力下降的主要因素。在燕麦种子老化过程中,不同抗氧化酶的活性变化具有一定的区域和顺序。SOD和APX首先在线粒体内发挥作用,然后是MDHAR和DHAR在种胚细胞内表现出较高的活性,GR贡献较小。以含水量为10%的燕麦种子为材料,在老化(45。C控制劣变20d)前后分别用AsA、GSH及AsA+GSH处理0.5h,然后分析其发芽率、种胚线粒体结构、酶活性及脂质过氧化的变化。结果表明:老化前用AsA、GSH和AsA+GSH处理不能抑制燕麦种子老化的发生,而老化后处理则能修复燕麦种子的老化损伤,AsA的作用效果要优于GSH,且两者的修复效果没有叠加作用。AsA的修复主要依赖于线粒体APX和MDHAR, GSH的修复作用则依赖于线粒体GR和DHAR,且APX和MDHAR在清除H202过程的贡献火于其GR和DHAR。以450C老化48d的超干(含水量为4%)燕麦种子为材料,,用-1.2MPa的PEG和蒸馏水引发12h,分析其活力水平、种胚线粒体结构、酶活性及脂质过氧化的变化。结果表明:PEG显著提高了种胚线粒体酶活性(P<0.05),并显著降低了H202和MDA含量(P<0.05),线粒体完整性增强,种子活力水平升高。然而蒸馏水引发12h则相反。这表明PEG引发不仅能修复超干燕麦种子的老化损伤,还能预防其在萌发过程的吸胀损伤。