SWCNTs增强6系铝基复合材料及其成形性能的研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:yujing4953
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于能源短缺与环境污染等问题,阻碍经济与社会发展,因此节能减排这一手段受到广泛的关注。现在汽车工业能有效的起到节能减排作用的是汽车轻量化。6061铝合金因其强度处于中等水平,耐腐蚀性能良好,且焊接与可加工性较好,适用于生产汽车常用的零部件等。单壁碳纳米管具有极高的强度、弹性模量,以及较低的密度和纳米级的尺寸,是常见复合材料的理想增强体。通过向6061铝合金基体中添加单壁碳纳米管(SWCNTs),可以获得高强度铝基复合材料。本文主要采用粉末冶金结合轧制工艺的方法制备高强度的单壁碳纳米管/6061铝基复合材料。以6061铝合金粉末为基体,研究不同单壁碳纳米管添加量、轧制塑性变形对单壁碳纳米管/6061铝基复合材料组织和性能的影响,获得高性能的铝合金材料,具体主要内容如下:(1)采用粉末冶金制备不同单壁碳纳米管含量的6061铝基复合材料,发现在6061铝合金基体中引入单壁碳纳米管可以有效地改善合金的组织和性能。随着单壁碳纳米管含量的增加,硬度、抗拉强度和屈服强度有所改善,但超过一定值时,性能反而下降。当单壁碳纳米管含量为0.2 wt.%时,单壁碳纳米管/6061铝基复合材料的组织和力学性能最优硬度为61.8 HV0.1,抗拉强度为173.1 MPa,屈服强度为95.4 MPa,伸长率为22.1%。同时通过对其组织进行观察发现基体中存在Mg2Si相、Al Mg Si相等第二相。(2)通过对不同单壁碳纳米管含量的铝基复合材料经轧制后的组织和性能分析可知,当单壁碳纳米管含量低于0.2 wt.%时,硬度、抗拉强度等均有所提高,当含量为0.2 wt.%时性能达到最佳,硬度为106.6 HV0.1、抗拉强度为308.3 MPa、屈服强度284.9 MPa、伸长率为9.7%。超过该值时,力学性能发生下降,在含量为0.3 wt.%时单壁碳纳米管的分散性较差,团聚较为严重,因此性能出现降低。(3)对单壁碳纳米管/6061铝基复合材料在不同轧制压下量的显微组织和性能进行观察和分析,发现硬度、抗拉强度等力学性能随轧制压下量的增加,会出现先增加而后减小的趋势,在压下量为62.5%时综合性能最佳;当热轧压下量超过62.5%时会出现微裂纹,而引起铝基复合材料性能的降低。综上研究表明,采用粉末冶金制备单壁碳纳米管含量为0.2 wt.%的6061铝基复合材料,经62.5%轧制压下量的塑性变形工艺,随后进行560℃×2 h的固溶和180℃×8 h+210℃×2 h的时效热处理后,复合材料的抗拉强度和屈服强度可提高到334.2 MPa和296.2 MPa,使其在汽车零部件上的应用范围得到扩大。
其他文献
球墨铸铁由于具备良好的强韧性,一直被广泛应用于重型机械领域某些零部件的制造。随着现代工业的不断发展,球铁领域的研究人员一直专注于开发具有更高拉伸和疲劳强度、同时具有较好韧性的球墨铸铁,尤其是在铸造状态下直接获得高强度、高韧性。众所周知,球铁的凝固特性、铸件自身的结构、浇注系统和补缩冒口的设置等众多因素将不可避免地使铸件内部产生残余应力;存在于铸态铸件内的残余应力会对随后的加工和使用带来一定的影响。
学位
随着我国航空航天技术的发展,作为运载火箭上面级的通用平台,大尺寸钛合金环形燃料贮箱的研发生产需求已极为迫切。目前,大尺寸钛合金环形燃料贮箱采用多段环壳件拼焊的方法制造,而其环壳件具有复杂曲面结构和极高的装配精度要求,采用传统热成形工艺存在吸氧吸氢、生产周期长、设备与制造成本高等问题。脉冲电流辅助拉深成形工艺可以利用焦耳热效应和电致塑性效应在环壳拉深过程中有效降低成形载荷、提高成形极限,同时能够实现
学位
<正>李先生今年65岁,他退休前从事管理工作,应酬较多,体形从中年时期开始逐渐发胖,现在身高175厘米,体重却达到90千克,腹部肥满松软,腹围达到96厘米。李先生性格安静,不喜欢运动,明显发胖后感到身体沉重,更加不愿意运动了。他的面部和额头部位出油很多,还常常出汗,出汗后并不觉得爽快,
期刊
有机无机卤化物钙钛矿由于具有带隙可调、吸光系数高、激子结合能低、载流子扩散长度长等优点而受到广泛关注。随着制备工艺及器件结构的不断优化,钙钛矿电池(PSCs)效率在短短十余年间迅速提高到25.7%,显示出良好的发展前景。目前高效PSCs大多是基于正式(n-i-p)结构,传统空穴传输层材料Spiro-Me OTAD价格昂贵,稳定性差,难以大面积制备,限制了商业化应用。而基于NiOx无机空穴传输层的反
学位
随着我国交通运输、航空航天等领域对新型装备轻量化要求的不断提高,高强铝合金复杂筋板构件因其具有强度高、刚性好、质量轻、承载能力强等特点,因此在装备关键结构件中使用了越来越多的高强铝合金。高强铝合金塑性差、成形温度范围小,锻造成形难度大;而筋板类构件往往结构复杂,锻造成形时易出现成形载荷大、型腔充填不满、流线紊乱等缺陷。因此研究和开发高强铝合金复杂筋板构件的塑性成形工艺,提高构件成形质量,是现代装备
学位
Ti2Al Nb基合金由于具有低密度、高强度等性能优点被广泛应用于高超音速飞行器、先进战机、空天飞机等重大战略航空航天领域。但随着科技发展日新月异,传统金属性能无法满足设备需求,亟需创新研发高效轻量化新材料。梯度结构材料由于能够打破传统强塑性限制,实现材料强塑均衡性和服役性能的大幅提升,发展前景优异。为此,本文以充分挖掘Ti2Al Nb基合金性能潜力为研究目标,提出了旋转梯度挤压制备高性能梯度结构
学位
本文的研究对象是用于某主战坦克高速风扇的铝合金散热叶轮,采用现有的制造工艺不能满足叶轮高转速的性能及寿命要求,甚至出现了超速测试时叶轮碎裂的严重事故。究其原因,主要是模态共振或铸造缺陷引起的疲劳破坏。因此,亟需研究适宜的铸造成形工艺,避免或消除铸造缺陷,使得生产出的叶轮零件符合各类性能要求。本文通过理论分析与数值模拟相结合的方法,分析了叶轮的结构特点,设计了低压熔模铸造和消失模铸造两种工艺,并优化
学位
为了提高仓储物流自动化与智能化水平,达到物流搬运行业提高工作效率与减少生产成本的目的,着力于设计一套基于STM32的智能物料搬运控制系统,使机器人实现行进控制、循迹定位、颜色及二维码识别、物料抓取与精准码垛等功能。根据设计需求进行分析,文中明确了物料搬运机器人的开发功能,将机器人设计划分为结构设计、电路设计、控制系统、视觉检测四个部分。为智慧物流加工行业解决人工劳力搬运分拣以及低智能机器低速低效搬
期刊
高速切削刀具是降低能耗和加工成本,提高生产效率和加工质量,推动机械制造产业升级的关键工具之一。作为切削刀具材料,Ti(C,N)基金属陶瓷具有较高的硬度、强度和耐磨性,以及良好的高温性能、导热率和低密度等优点,在切削加工中表现出了良好的高速切削性能。然而,Ti(C,N)基金属陶瓷刀具还存在着强韧性不足的缺点,在使用过程中容易出现崩刃、碎裂的情况。为了进一步提高其应用范围,在不降低硬度的前提下提高强韧
学位
锆及锆合金因其低的热中子吸收截面、良好的力学性能和优异的耐腐蚀性能等而被广泛应用于核反应堆中的结构材料和包壳材料。但是,未来核反应堆技术朝着提高燃料燃耗和安全可靠性方向发展,传统锆合金已不能满足核工业发展的要求。相比于传统粗晶材料,大塑性变形制备的超细晶材料表现出更好的物理化学性能和力学性能。高压扭转作为典型的大塑性变形工艺之一,其通过施加高静水压力和切向剧烈剪切变形,能在较低温度下制备超细晶和纳
学位