论文部分内容阅读
粒细胞集落刺激因子(G-CSF)主要来源于巨噬细胞、内皮细胞及纤维母细胞,具有高度特异性的刺激中性白细胞系的功能。G-CSF作为药物分子已广泛应用于临床,其主要的不足有生物活性低、体内稳定性差和体内半衰期短等。本文设计G-CSF突变体期望提高G-CSF的生物活性,采用白蛋白融合表达技术提高G-CSF的体内稳定性,为长效G-CSF的研究创造条件。依据G-CSF的结晶结构信息,我们利用Swiss-pdb Viewer 3.7软件的同源建模功能构建出融合蛋白突变体的三维结构。在Hyper Chem软件中计算各融合蛋白突变体的单点能,并与突变前作比较。单点能计算显示,对远离活性位点的5个氨基酸残基进行的突变得到的结构分子能量最小。分析各突变体的G-CSF骨架结构与野生型G-CSF骨架结构的差异,表明那些能保留活性作用结构的突变体其突变位点均接近N端,与单点能计算结果综合分析,认为M8突变体生物特性与天然构象相似,活性位点的两个重要氢键(19-Glu-O与173-Tyr-O、22-Arg-N与238-His-O)得到保留。选取活性和半衰期有望提高的突变方案M8,将其在毕赤酵母系统中进行表达,并对融合蛋白进行了鉴定,验证理论计算的合理性和可行性。全合成人G-CSF基因突变体的序列(hG-CSF~m),插入克隆载体pBlu2KSP-HSA中,构建重组质粒pBlu2KSP-HSA-hGCSF~m。测序结果显示克隆得到的hG-CSF~m基因与突变方案的序列完全一致。用EcoRⅠ和NotⅠ双酶切重组质粒,回收HSA-hGCSF~m片段,插入到毕赤酵母表达载体pPIC9k中,构建表达载体pPIC9K- HSA-hGCSF~m。经限制性酶切分析证明融合基因已经成功地插入到载体pPIC9k中,测序结果表明HSA-hGCSF~m融合基因与预期的一致。表达载体经SalⅠ线性化后电击转化毕赤酵母GS115,以MD平板进行初筛,得到的重组子进行诱导表达分析。将表达量较高的重组毕赤酵母进行表达产物鉴定和G-CSF活性分析,优化诱导时间和诱导剂浓度后,对融合蛋白进行初步的分离纯化。诱导表达筛选得到1株表达200 mg/L目标蛋白的重组菌32。Western杂交显示表达产物具有很好的HSA抗原性,分子量约84 kDa;NFS-60细胞/MTT比色法测定表达产物具有G-CSF的生物学活性,野生型融合蛋白的比活性为5×104IU/mg,突变后提高为1.5×106IU/mg,说明重组菌32可成功表达具有G-CSF生物活性的HSA-hGCSF~m融合蛋白。