疏水型NaY分子筛吸附剂的制备及VOCs脱除性能研究

来源 :河北科技大学 | 被引量 : 0次 | 上传用户:ZHANGLONGQI008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
VOCs是造成空气污染的主要因素之一,具有一定毒性,对身体及各个感官有刺激作用,控制VOCs的污染刻不容缓。传统活性炭吸附剂存在吸附效果较差、易爆燃等问题,而分子筛吸附剂具有热稳定性强、不易燃、再生性好等独特优势。但分子筛表面的羟基基团具有亲水性,限制了其在实际工业应用中含湿VOCs的高效脱除,因此有必要将其进行疏水化改性,使得疏水性能提升,吸附效果改善。本文采用固定床动态吸附法,对NaY分子筛吸附3种典型VOCs的性能进行了深入探究。考察了吸附温度、湿度、进气浓度和吸附质物理性质对吸附容量的影响,并探讨了NaY分子的筛循环使用性能;通过Yoon-Nelson模型,从吸附动力学角度,对单组分VOCs吸附穿透曲线进行了拟合。结果表明:NaY分子筛对3种VOCs的吸附饱和时间分别为丙酮355 min,邻二甲苯320 min,乙酸乙酯220 min;相对应的平衡吸附容量分别为丙酮176 mg·g-1,邻二甲苯196 mg·g-1,乙酸乙酯185 mg·g-1。NaY分子筛对VOCs吸附能力大小为邻二甲苯>乙酸乙酯>丙酮。温度由303 K升至328 K时,3种VOCs吸附容量均分别下降,邻二甲苯下降3.66%,乙酸乙酯下降2.87%,丙酮下降10.0%;VOCs相对湿度为30%时,吸附容量显著降低;进气浓度为660 mg·m-3时,出现吸附交叉的现象;NaY分子筛具有较好的循环使用性;吸附容量与沸点、分子质量存在正相关关系;3种VOCs在NaY分子筛固定床的吸附速率大小为乙酸乙酯>邻二甲苯>丙酮。Yoon-Nelson模型能够较好地模拟NaY分子筛吸附不同VOCs的过程,为分子筛的工业应用提供了参考。对NaY分子筛吸附剂进行疏水化改性试验,筛选出最优改性条件:改性剂二甲基二氯硅烷与有机溶剂环己烷体积比3:17混合后,50℃下冷凝回流5小时得到疏水性最佳的NaY分子筛。对疏水性分子筛表征结果表明疏水性基团成功接枝到分子筛表面。吸附性能测试结果表明:在相对湿度30%条件下,硅烷化改性后分子筛相吸附邻二甲苯、乙酸乙酯、丙酮的吸附容量分别为:37.35 mg·g-1、79.10 mg·g-1、49.63mg·g-1,相对于未改性分子筛的吸附容量分别增加了6.16倍、2.16倍、0.58倍,并且吸附穿透时间均得到相应的延长,吸附能力明显得到提升。
其他文献
自2004年石墨烯首次成功制备以来,二维纳米材料受到了研究人员的广泛关注,在多个研究领域都具有重要研究价值。随着研究的深入,二维纳米材料家族的种类日渐丰富,除石墨烯外还包括硅烯、黑磷(BP)、过渡金属硫化物(TMDCs)等。其中,TMDCs作为二维材料家族类石墨烯材料的典型代表,除具有良好导电性、导热性、柔韧性等优异性质外,还具有良好的吸附动力学、较低的气体吸附能和较高的表面体积比,这些性质使得T
学位
药物研发是一个漫长、复杂的过程。据统计,一款新药从研发到上市通常需要花10年以上的时间,且成本投入在10亿美元以上。高额的时间和经济成本投入是药物昂贵的主要原因。随着计算机技术的快速发展以及可访问数据库的激增,计算机辅助药物设计(CADD)在药物研发中发挥越来越重要的作用。基于化学分子与靶体之间的结构,理论预测结合亲和力来确定先导化合物是CADD的核心技术。因此,亲和力预测的准确性将决定虚拟筛选的
学位
大亚湾反应堆中微子实验于2012年首次发现非零的中微子振荡角θ13。随着数据量的增加,大亚湾实验一直在提供该参数世界范围内的最精确的测量。实验采用三个不同的实验大厅,专门的缪子探测器和8个功能全同的电子型反中微子探测单元收集了高统计量和高精度的中微子事例和其他事例。本论文利用大亚湾中微子实验中约1800天的实验数据,对宇宙线缪子调制和中微子振荡分析使用的反贝塔衰变样本中的宇宙线缪子诱发9Li/8H
学位
金属有机框架(MOF)作为一种新型的天然多孔材料,不需要经过钻孔或者堆积形成纳米层通道即可达到分子筛分的目的,从而在气体分离、海水淡化、污水处理以及气体干燥等分子筛分领域具有广泛的应用前景。在分子筛分的研究中,氦气分离以及海水淡化是两个重要的研究方向。由于氦气对于国家国防军工以及高科技产业的发展具有重要意义,随着社会以及科学的不断发展,世界各国对氦气的需求也在不断增长。但是氦气资源短缺是我们现在正
学位
在过去的几十年里,人们提出了多种与电子自旋属性相关的物理效应,并根据这些效应制备出各种功能器件,使得自旋电子学得到了极大的发展。2011年,人们制备出了高质量的Pt/Co/AlOx多层膜,并实现了利用自旋轨道矩(Spin-orbit Torque,SOT)驱动磁化状态的翻转,引发了人们研究SOT磁性随机存储器(SOT-MRAM)的热潮。基于SOT效应的自旋电子器件具有非易失、高运算速度、低功耗以及
学位
众所周知,由传统薄膜制备工艺加工出的电子器件存在着固有的界面缺陷,而近几年发现的二维磁性材料因具有原子量级的平整薄膜质量和单层磁有序性等特点,不仅为解决传统薄膜器件的界面缺陷问题提供了优解,同时还有望实现更低耗能、更高效率的电子器件的制作。在诸多二维磁性材料中,Fe3GeTe2材料因自身独一无二的优异特性脱颖而出——它是一种具有拓扑铁磁性的二维磁性金属材料。纳米级别厚度的Fe3GeTe2薄膜具备铁
学位
石墨烯的成功剥离激发了人们对低维材料的强烈实验和理论兴趣,如硅烯、锗烯、锡烯、磷烯、过渡金属二硫化物(TMDs)、过渡金属三硫化物(TMTs)等。由范德瓦尔斯相互作用结合在一起的二维固体材料具有更为丰富的物理化学性质,因而备受关注。二维(2D)材料通常显示出与块体材料显著不同的电子、光学和结构特性。因此,许多具有层状结构的二维晶体成为纳米电子学和光电子学的潜在候选材料。随着现代化信息科学的快速发展
学位
拓扑绝缘体是内部绝缘、表面导电的一种全新的量子物态,凭借其新奇的物理性质,成为近些年来非常热门的研究领域。由于表面态受到时间反演对称性的保护,对无序等微扰具有良好的鲁棒性,因此,其在自旋电子学、新型二维电子器件和量子计算机等领域具有巨大的应用前景。稀土六硼化物是含有f电子的强关联体系,因此表现出各种奇异的电子性质:超导性、优异的电子发射性能、近藤效应、混合价态和拓扑性质等,这使得稀土六硼化物受到广
学位
通过对薄膜器件施加电压,利用电场效应对材料的磁学、光学、电学等性质进行可逆调控,对提高材料功能性,开发新型电子器件具有重要意义。在电场调控金属薄膜性能的过程中,由于高浓度载流子对电场产生的库仑屏蔽效应,使得电场诱导离子迁移成为电调控金属薄膜性质最有效的方法之一。人们在储氢金属的研究中发现,许多金属不仅具有良好的储氢性能,并且吸收氢气后,其磁学、光学或电学性质还会发生相应的变化,这为电场诱导H+迁移
学位
研究新物态的特性、相变与应用是凝聚态物理当前的主要研究内容。拓扑绝缘体是一种体内绝缘但表面导电的新型量子态,具有被时间反演对称性保护的非平庸表面/边缘态。它的发现颠覆了人们用对称性或某种局域序参量来描述物态的观念,拓扑量子态可以用拓扑不变量来描述。如拓扑绝缘体可以用Z2不变量标记,其在二维和三维体系中均可实现。拓扑绝缘体中磁性的引入可以实现量子反常霍尔效应等新奇量子现象,为低能耗自旋电子学器件的设
学位