高速列车车体受电弓平顶声振特性及降噪措施研究

来源 :西南交通大学 | 被引量 : 0次 | 上传用户:xs0405010154
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我国高速列车运营速度目前最高达350 km/h,车辆噪声问题也随列车速度的提高愈发突出。由于受电弓几何结构复杂,在列车高速运行过程中会对气流产生扰动从而辐射气动噪声,同时脱落的漩涡撞击车体壁面在车体表面产生湍流脉动压力。此外,受电弓在弓网接触力和气动抬升力的共同作用下也会对车体产生力激励。上述多种激励经复杂的车顶结构和空气对车内噪声产生贡献。因此,相比客室中部以及普通转向架上方车厢,受电弓下方车厢具有更加突出的噪声问题。明确多激励条件下受电弓平顶板的传声特性对设计有效的噪声控制方案具有指导意义。论文主要由以下几部分组成:首先,通过文献调研,明确了高速列车受电弓区车内噪声问题突出的原因:激励源多样,且激励强度大;传递路径复杂。从受电弓及平顶的声振特性、受电弓区域气动激励特性以及受电弓和平顶的噪声控制三个方面讨论了目前研究进展,最后确定本文的研究内容。其次,基于FE-SEA理论,考虑受电弓平顶传声全链路的细节特征,建立组合顶板结构传声特性分析模型,首先以白噪声作为激励,初步掌握了受电弓平顶传声特性,定量分析了路径中各组分对车内声腔的声能量贡献。再次,基于CFD方法对受电弓区域流场进行模拟,获得受电弓气动激励。包括平顶上方气动噪声,以及通过“波数-频率”方法提取到的顶板壁面脉动压力。接着,基于DAF声激励模型与Corcos湍流激励模型,分析了气动声激励、湍流边界层激励以及受电弓力激励作用下顶板结构的声振响应及传递特性。受电弓平顶结构的平顶铝型材是辐射噪声的主要部件,其振动声辐射对车内声腔的声能量贡献约为67%~77%。“安装基座-车体型材-吊装结构-内饰顶板”是主要的结构传声路径,该路径对车内声腔的声能量贡献约为15%~21%。另外,受电弓平顶结构的的声振响应频谱在在型材本身固有频率处出现峰值,说明车体型材对车内的声学贡献主要受其本身模态控制。最后,开展受电弓平顶结构噪声控制方案设计,并将优化方案应用到通过验证的整车车内噪声模型。受电弓下方车厢内噪声降低了2.4 d BA,平顶结构各部件的振动速度级降低4~5 d B,减振降噪效果明显。
其他文献
滚动轴承故障诊断因与设备安全性息息相关,一直以来都是十分受重视的研究课题。在实际工程应用中,由于轴承承受来自多方面的压力,各个部位的损伤程度也有所差异,轴承故障的振动信号常常不具有像平稳信号那样的良好统计特性。并且由于轴承受到工作条件,设备类型,工作环境等多方面因素的影响,轴承复合故障形成机理复杂,故障数据难以采集,采集到的数据通常存在数据类型不完整或缺失部分故障特征等问题,导致故障数据难以用于训
随着我国共享经济时代的到来和国民环保意识的提升,自行车以其灵活、便捷、无污染、可达性高以及能够有效解决“最后一公里”问题等特点,重新回到了大众的视野,成为城市交通系统重要的组成部分。然而,由于我国人口密度较大、道路环境复杂,且非机动车辆管理存在漏洞,自行车交通事故数量逐年攀升,成为威胁交通系统安全的重大隐患。骑行者作为自行车的直接操纵者,其具体行为直接影响到行车安全。在行为决策过程中,骑行者通过感
水是地球生命生存最重要的资源之一,水环境的种种问题严重影响了人类生存和社会经济的稳步发展。岷江是长江的重要一级支流,岷江(眉山段)属于岷江中游,眉山每年产生的各类废污水对岷江水环境有极大风险,极易造成水体污染,深度评价与改善眉山市岷江流域的水质状况是目前亟待解决的重要问题。近年来,我国已发生多起水体污染事故,造成的后果非常严重,水安全问题越来越受到重视,水质安全评价属于水安全领域的重要方面,本文针
裂纹闭合效应自被发现以来便成为各国学者的研究热点。传统裂尖应力场模型无法描述裂尖塑性区及尾迹区对裂尖应力场的影响,而CJP模型可以弥补传统模型的不足,且在针对聚碳酸酯、工业纯钛、铝合金等材料的塑性诱导裂纹闭合效应形成机理研究中取得了丰硕成果。车轴在服役过程中承受的载荷复杂,且受到轮轨激励等因素导致的过载影响,因此本文以高速列车EA4T车轴钢为试验材料,借助数字图像相关技术,开展过载条件下的紧凑拉伸
随着目前人们生活物质水平的日益提升,生活节奏也随之不断地加快,城市的交通运输能力已经成为了制约整个城市进步的重要原因之一。城轨车辆的制动系统性能对车辆能否在行驶过程中快速高效地停车起着决定性的作用,是城轨车辆安全的重要性能。然而随着目前城市轨道交通的高速发展,现阶段的正在运营的车辆数量的不断增加,因为制动系统故障所引起的行车安全问题也越来越频繁。所以对城轨车辆制动系统进行故障分析来提高行车安全及可
女性乳腺癌在2020年已经超过肺癌成为全球癌症发病率的第一大病因。在乳腺癌早期阶段正确诊断以及时获得治疗,可以极大的提高病人的存活率。因此,乳腺早期的正确诊断得到了广泛的关注。超声波成像由于其易于使用、体积小、非侵入方法性和低成本等特性,已经成为临床医师在早期筛选中检查乳腺组织良恶性的首选。同时,今年来超声造影使用也逐渐广泛。大多数临床诊断中,都是联合B性超声和超声造影作为主要的诊断方法。因此,本
当前社交媒体发展迅速,各种各样的信息时刻地被发布与转发。信息时代带来众多便利的同时,我们也被众多的谣言、虚假信息所包围着。谣言的广泛传播,容易对网络安全和社会稳定造成严重的威胁。如何从社交媒体广泛的、多模态的信息中有效识别出谣言成为目前的研究热点。而在检测研究中需要基于大量的数据集对算法模型进行训练,这一过程容易造成私有数据集或隐私数据的泄露,对社交媒体平台或用户的利益造成损害。本文基于深度学习方
轨道不平顺是轮轨系统的主要激扰源,是造成车体各种振动的主要原因,对列车运营的安全性、乘客乘坐的舒适性、养护维修的经济性等都有着巨大的影响。在我国高速铁路不断发展的大背景下,伴随着车速提升带来的高速度、客货共线带来的高密度等问题对轨道的平顺性提出了更高的要求。为此,对轨道的平顺性状态进行科学合理的评价就显得尤为重要。目前,我国针对线路养护维修工作所采用的主要评价方法仍是均值管理和峰值管理。均值管理针
学位
光子可以理解成量子化电磁场的单模激发态,量子化电磁场的模式6)中单个光子的能量可以通过频率与普朗克常数?表示为?。单光子可以理解成光子数的统计平均值为1与方差为零的单光子态。单光子探测技术在国防、国家安全以及量子通信等领域中扮演重要角色,是当下我国急需抢占的科技制高点,具有重要的研究意义。本文中的单光子探测主要面向可见光到近红外波段的弱光以及能量更低的微波频段的微波单光子。首先,对射频电路与系统的