2219铝合金球壳超低温拉深成形规律

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:sbsb5503564
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着新一代航天装备向轻量化和高可靠发展,迫切需求一类大尺寸、超薄壁厚的铝合金球壳。常温拉深成形此类球壳,极易出现起皱和开裂并存缺陷。针对此难题,本文提出铝合金超低温拉深成形技术。该技术采用超低温介质将铝合金板材冷却至具有双增效应的临界温度,通过模具整体成形出薄壁壳体,具有成形极限高、组织性能易控制等系列技术优势。本文以2219铝合金球壳为对象,通过数值模拟和工艺实验方法,研究铝合金在不同超低温温度分布条件下的拉深变形规律和缺陷形式,获得球壳超低温成形温度窗口,为大尺寸薄壁壳体整体成形提供理论指导和技术支持。通过平底筒形件极限拉深比实验获得了2219-W态板材在超低温温度场下的拉深性能。板材的拉深性能在超低温温度场下显著提高,极限拉深比由常温下的1.8增加至2.2,极限成形深度由常温的54.3mm增加至95.3mm。通过数值模拟,获得了厚径比对球壳起皱趋势和变形能力的影响规律。球壳厚径比越小,临界起皱应力越小,起皱趋势越大。同时,球壳厚径比越小,变形越大,开裂趋势越大。揭示了超低温拉深起皱机制和变形均匀协调机制。超低温拉深时,法兰区强度受温度影响。试件法兰区强度越低,悬空区起皱趋势越大,变形越小且壁厚分布越均匀。获得了压边力对球壳起皱行为和变形能力的影响规律。球壳悬空区起皱与环向压应力有关,增大压边力可以减小环向压应力,抑制试件悬空区起皱。但是压边力越大,试件的变形越大,开裂趋势越大。因此,应当根据构件厚径比选择合适的的温度分布。成形厚径比较大球壳时,缺陷以开裂为主,应当采用对应法兰区材料强度较低的温度分布;成形厚径比较小球壳时,起皱趋势大,确保满足变形条件下控制起皱,应当采用对应法兰区材料强度较高的温度分布。通过超低温拉深成形工艺实验,阐明了不同温度分布和压边力条件下的成形缺陷演变规律,建立了球壳超低温拉深成形工艺窗口。试件法兰区强度越低,悬空区起皱趋势越大;法兰区塑性越低,试件悬空区开裂趋势越大。随着温度降低,材料的强度和延伸率先降低再升高,法兰区常温和法兰区温度低于-160℃的超低温温度场为成形小厚径比球壳的优异温度窗口。
其他文献
偏振探测技术不断发展,由早期的分时式、分振幅式、分孔径式不断演变为目前应用最多的更为集成化的分焦平面的集成阵列式结构,并且一直在往小型化和高度集成化发展。分时式探测结构,其结构简单探测空间分辨率高,但是不能够同时获得多角度的偏振信息,探测器时间分辨率较低;分振幅式探测结构,可以实现实时探测,但探测系统装配精度要求高,并且要求长时间保持;分孔径式实现了实时探测,但是探测装置体积和重量大,空间分辨率损
学位
镍基高温合金Inconel718材料也被称为“万能合金”,是目前拥有着最普遍应用的镍基高温合金之一。它在高温下还拥有良好的机械强度、韧性及优异的抗氧化、抗辐照能力,在国防、宇航、核电、石油化工等行业中有着非常普遍的应用。由此,本文以材料性能角度出发,研究Inconel718合金材料激光熔覆后形貌尺寸规律和材料性能变化。此研究为激光熔覆Inconel718提供理论基础,在推动该材料零部件激光熔覆修复
学位
先进的飞行器技术作为航空航天领域中关乎着国家安全的重要技术,受到各国研究机构的青睐,可以说掌握了该技术就掌握了未来的战场主动权。先进飞行器研发需要大量的实验数据作为支撑,其中风洞实验获得的气动数据尤为重要。但随着风洞实验对飞行器模型气动力测量的准确性要求增加,风洞实验室的尺寸越做越大,为更大体积的飞行器模型进行吹风实验提供了优良的基础条件,但传统的风洞试验方法也开始逐渐体现出来各种不足之处。本文针
学位
微装配是将多个不同尺度的微小零件精密集成的工艺过程。显微视觉引导的定位和操纵是实现微装配任务的主要途径,定位操纵准确性与视觉测量分辨率密切相关。理论上物镜数值孔径越大,显微视觉成像的分辨率越高,但相应的视场、景深和工作距离也随之减小。有些装配任务要在高分辨率下才能保证精度,但其姿态调整则要在大视场条件下进行,以避免执行器、镜头、工件之间的干涉碰撞。在这类工作场景下,如何兼顾显微成像大视场和高分辨率
学位
立体微纳结构作为平面结构的重要补充,在微纳传感器、精密光学、组织工程、新能源等领域有着巨大的产业需求。然而,低成本、高效率地制备高长径比的立体线形结构比较困难。电流体喷印技术可以通过稳定的微纳射流实现立体结构的打印,具有打印分辨率高、材料选择范围广、工艺简单等特点,非常适合高长径比立体线形结构的制备。本文首先对热场调控电流体喷印的过程进行了理论分析,通过构建仿真模型,着重研究了墨水粘度对射流的影响
学位
混凝土是建筑工程中的重要材料,但混凝土在腐蚀性环境和冻融环境中易因水的渗入而被腐蚀或破坏,严重影响了混凝土建筑的安全性、耐久性和美观性。使混凝土表面获得超疏水性可防止水的渗透,能有效保护混凝土建筑。但现有超疏水涂料的机械强度较低以及现有超疏水混凝土与保温层的黏合强度较差,导致超疏水表面在建筑领域的应用受到限制。针对以上问题,论文通过在混凝土砂浆中加入聚丙烯酸酯乳液(PAE),研制了一种新型的超疏水
学位
加速度计作为惯性导航系统的核心元件,广泛应用于航空、航天等领域,加速度计精度的高低对导航和制导精度影响很大。为提高加速度计标定精度,离心机测试加速度计时,通过改变加速度计姿态和离心机转速提供多位置,多范围的信号激励,在保证位置精度的同时,得到不同姿态下的输出信号。目前,加速度计多位置测试通常需依赖精密转台实现高精度定位,而不依赖转台的方法精度又较低。本文根据加速度计离心机测试的位置要求,研制出一款
学位
传统的道路监控探头在处理交通事故中需要专业人员手动找到违规人员和肇事车辆,这样不仅效率低下,且因为探头被固定安装带来了机动性差、视野狭窄等问题。将无人机摄像头作为道路监控探头具有体积小、成本低、视野广阔、灵活性高等优点,此外,运用基于视觉的目标检测技术对无人机影像进行智能化分析可以快速且准确的定位地面的行人及车辆,同时大幅度提升监测效率。基于上述背景,本文对行人及车辆目标检测技术展开了研究,并基于
学位
在机械生产加工中,对切削力进行准确测量关乎对于整个切削过程的控制,是智能制造及自动化生产所不可或缺的技术。在众多可以实现切削力测试的测力仪中,压电式测力仪具有良好动态测试性能的突出优点,四维力测力仪能够满足车、磨、刨、铣等大多加工方式的切削力测试,四支点测力仪刚度高,能保证优良的测试精度,因此四维力四支点压电式测力仪得到了广泛应用。随着精加工和多任务加工设备的发展,近年来对于测力仪的测试性能和通用
学位
掩膜电解加工是一种应用广泛的加工技术,在金属微结构的加工中具有独特的优势,如:加工速度快、加工后工件无残余内应力、工具电极无损耗等。在进行常规掩膜电解加工金属微结构时,边缘效应影响下的边缘电场强度高于中心,导致金属微结构的整体尺寸均匀性较差。为了解决这一问题,本文提出了一种移动喷射式掩膜电解加工技术——通过缩小阴极面积使边缘效应减弱,利用移动阴极来平衡电流密度和加工时间,同时通过喷射加工及时排出电
学位