消防减阻用PEO/OTAC/NaSal体系的介观分子动力学模拟研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:nqqlove
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着我国城市化进程加快,城市建筑的发展方向越来越趋向于高大密集,火灾隐患也随之增加。高层建筑发生火灾时,存在消防人员难以接近、人员疏散困难、火势蔓延迅速等问题,这对消防设备的性能提出了更高的要求。对于常用的喷水灭火方式而言,给水系统压力波动大,为了获得更高射程和冲击力,快速到达高处着火点,水流在管道流动中需要克服更大流动阻力。这在影响灭火效率的同时也增加了输送泵的功耗,造成能源的浪费。向消防水中加入减阻剂是一种简单高效的方法,能够很好地兼顾灭火效率和节约能源。表面活性剂和聚合物是目前应用最多的两类减阻添加剂。通过对比可发现,表面活性剂或聚合物的单一体系均难以满足消防减阻的使用需求。将表面活性剂与聚合物复配后,可展现出优于单一组分的体相或界面性能,赋予体系一定的耦合减阻特性,因此考虑某些聚/表复配体系能适用于消防减阻。本文采用基于Martini力场的粗粒化分子动力学模拟方法,对阳离子表面活性剂十八烷基三甲基氯化铵(OTAC)与非离子型聚合物聚氧化乙烯(PEO)复配体系进行了系统的研究,主要内容及得到的结论如下:(1)模拟了OTAC、PEO以及二者的复配溶液自组装的过程,探究了体系内自组装结构对不同工况的响应。在复配体系中,OTAC和PEO最终形成一种以OTAC胶束为主要骨架,PEO附着在周围的聚集体结构,这种聚集体比起表面活性剂自身形成的胶束更为紧密牢固,并且聚集过程不受反离子盐浓度影响。温度对体系整体结构的形成具有两面性,稳态结构中胶束最大分子量的增长率随温度升高先增大后减小。(2)从分子动力角度解释了复配体系内聚合物、表面活性剂分子之间的作用机制。在复配体系中,PEO分子之间、PEO与水之间、PEO与OTAC胶束之间的作用强度相当,但PEO与水作用弱于水分子自身间的作用,当OTAC胶束表面出现未与水分子结合的空位后,PEO会和OTAC胶束表面相连,除此以外的PEO与水相连。随着PEO浓度的升高,PEO与二者之间的连接量都会增多,当PEO浓度增大到一定程度后,PEO自身之间的连接又会增多,又会限制与OTAC和水分子的连接。(3)计算了不同浓度及温度下复配体系剪切粘度和表面张力,研究复配体系的稳定性,验证其在消防减阻的适用性。模拟温度范围内,低温时表面活性剂体系和不同的复配体系基本没有区别,抗剪切和减阻能力最弱。温度升高,复配体系与纯OTAC体系相比抗剪切能力和减阻性能得到明显提升,继续升高温度又会导致性能下降,但此时复配体系在抗剪切能力和减阻能力仍然优于纯OTAC体系。不同浓度的复配体系在模拟温度范围内,与纯OTAC体系相比表面张力均有提升,这可以有效降低射流表面的湍流强度,提高射流集束性。说明聚合物/表面活性剂复配溶液适用于消防减阻。
其他文献
城市河道修建多级闸坝,实现层层拦截蓄水,形成良好的水上景观,但随着闸坝数量增多,蓄水量增加,梯级闸坝汛期调度问题随之而来。汾河太原城区段共修建7座橡胶坝和2座水闸,总蓄水量2600万m~3,汛期不合理的闸坝调度可能造成“洪水叠加”,危及工程及下游河道安全,故有必要对汛期闸坝调度规则进行探索研究。对于大频率洪水,需要提前塌坝泄空以保证安全行洪,而对于较小频率洪水,塌坝泄空会造成水资源浪费,不利于洪后
学位
天然气水合物作为极具发展潜力的一种新兴能源,拥有储量大、比热值高、环境污染小等优势。同时气体水合物技术广泛应用于海水淡化、气体分离、气体储运等工业领域,而促进水合物快速生成是制约该技术应用的主要影响因素。水合物是由气体和水在低温高压的条件下经过气相溶解、成核、生长三个过程形成的。晶核的形成往往需要一段不确定性的诱导期,减少诱导时间是加速水合物生成速率的重要途径。机械强化作为缩短水合物诱导期的重要途
学位
甲醇制芳烃(MTA)作为非石油路线合成芳烃的重要途径,不仅可以调控芳烃生产成本,而且可以降低我国石油依存度。MTA过程中的产物分布是衡量该反应的重要指标。目前,MTA产物分布的预测方法包括:热力学模型、动力学模型和数据驱动模型。前两种模型是化工过程建模中常用的产物分布预测方法,具有明确的物理意义,但是MTA反应机理复杂,建立的动力学模型和热力学模型具有复杂性,并且假设条件较多,模型的使用范围会受到
学位
十二烷基苯磺酸盐是一种重要的阴离子表面活性剂,被广泛应用于日用洗涤剂、化工生产和石油开采过程,是日常生活与工业生产中不可或缺的重要化工产品。目前工业上十二烷基苯磺酸(DBSA)主要通过气相SO3磺化十二烷基苯(DDB)制备而来。而该过程通常被描述为“受传质控制”的、强放热、瞬时反应过程,反应热高达170k J/mol。因此对磺化反应器的传热传质以及安全性能提出了很高的要求。随着精密加工技术的不断发
学位
苯并[α]芘是多环芳烃(PAHs)中毒性最大的一种强烈的致癌物,不易降解,可通过食物链累积影响人类健康。由于具有致癌性和诱变性,其在水环境中的存在受到人们的广泛关注。因此,需要寻找有效去除PAHs的方法。目前去除PAHs有传统的物理方法、化学方法和生物方法均不能很有效的将其去除,有研究发现从漆树和双孢蘑菇中提取出来的漆酶(Laccase)和从辣根中提取出的辣根过氧化物酶(HRP)对PAHs能有效的
学位
芳烃是重要的有机化工原料,我国对芳烃的需求巨大,但是现阶段国内芳烃供应量存在较大缺口。为了解决国内芳烃产能不足的问题,从我国“富煤、贫油、少气”的能源禀赋出发,研究煤基转化制取芳烃具有重大的战略意义。煤基转化制芳烃主要指的是煤经甲醇制芳烃(Methanol To Aromatics,MTA),MTA按照反应工艺技术可分为固定床一段法、固定床两段法和流化床法。固定床两段法MTA工艺相对于固定床一段法
学位
当今世界,氢气因其来源丰富、储存密度大、零污染等优点逐渐代替化石燃料成为一种新型能源。电催化水解作为大规模制氢方式之一,具有清洁、可持续的优点。然而电催化水分解反应最大的挑战在于如何合成和利用高效催化剂。Pt基催化剂虽具有优异的催化性能,但其高成本和稀缺性严重制约着其在析氢方面的应用。因此开发来源充足、经济有效的非贵金属催化剂已成为一项重要课题。而近年来,过渡金属碳化物(TMC)以其类似于铂基催化
学位
氨不仅可以作为化肥以及含氮化学品的源头产物,也可以作为能源载体在可再生能源的储存与转化过程中发挥重要作用。由于传统的Haber–Bosch合成氨工艺条件较为苛刻,且过程能耗大,CO2排放大。因此,开发温和条件下合成氨技术显得尤为迫切。化学链合成氨作为一种新型、低压合成氨技术受到学术界的广泛关注。化学链合成氨是指将合成氨的反应解耦为多步的闭环反应,通过载氮体的消耗与再生完成化学链循环。载氮体作为化学
学位
随着氢燃料电池汽车商业化速度的加快,在氢燃料电池运行和管理中,安全问题已成为公众关注的焦点。氢燃料电池的进气系统控制流场内阴阳两极气体压力相等,当电堆受到较大冲击碰撞后,螺栓松动导致电池内部发生部件错位、密封圈失效等情况,造成反应气体泄漏,诱发电池性能衰减等危险。因此,研究人员们开始重视氢燃料电池内部压力监测技术的研究。常规的刚性压力传感器一般安装于氢燃料电池汽车底盘的管路和储氢罐阀门口,存在维修
学位
磺酸盐表面活性剂是产量最大、应用最广的阴离子表面活性剂之一。目前,磺化工艺应用的磺化反应器主要是降膜反应器,存在易产生混合不均、局部过热等现象,导致副产物生成的问题。而微反应器技术因其具有传质传热效果好,以及安全、高效、绿色的特点引起研究者们的广泛注意,并逐渐被应用于众多的有机合成中。因此,探索磺酸在微通道中的连续合成对实现安全、高效、绿色的磺化工艺具有重要的意义。本文以十二烷基苯磺酸(DBSA)
学位