多维度Cf/ZrB2-SiC复合材料的微结构构筑及性能研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:wjwjwwj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高超声速飞行器鼻锥和翼前缘等热端部件在飞行过程面临超过1800℃、大温度梯度和强氧化环境,为保持飞行器的维型和机动性能及精确打击性能,对热端部件用热防护材料提出了长时间超高温非烧蚀的需求。传统的难熔金属、石墨、C/C和C/SiC复合材料等高温材料已不能满足热防护的要求,超高温陶瓷材料因其高熔点、优异的力学性能和出色的抗氧化烧蚀性能而备受关注。然而,超高温陶瓷材料较低的断裂韧性和较差的抗热冲击性能制约了该材料的工程化应用,且采用传统的增韧手段提升超高温陶瓷材料的可靠性已趋于极限。碳纤维由于具备优异的室温和高温力学性能,被认为是超高温陶瓷材料当前最具潜力、最有效的增韧方法。短切碳纤维引入虽能提高超高温陶瓷材料的断裂韧性,但其增韧幅度有限,难以从根本上解决陶瓷材料的本征脆性;连续碳纤维引入能够大幅度提升陶瓷材料的破坏应变和断裂功,彻底改变超高温陶瓷材料的脆性断裂模式。然而,连续碳纤维与超高温陶瓷基体的非均匀复合化及碳纤维结构损伤难题制约了连续碳纤维增韧超高温陶瓷材料的发展和工程化应用。本文首先采用浆料刷涂工艺实现碳纤维束与超高温陶瓷基体的均匀复合,并借助纳米ZrB2粉体高烧结活性实现二维Cf/ZrB2-SiC复合材料的低温热压制备。但二维Cf/ZrB2-SiC复合材料采用叠层结构,在应力作用下易分层开裂,应用可靠性较差。随后采用三维碳纤维编织体替代碳纤维束,并结合振动辅助浆料浸渍/热压烧结等工艺实现三维Cf/ZrB2-SiC复合材料的制备,系统研究三维Cf/ZrB2-SiC复合材料的力学性能、热冲击性能及抗氧化烧蚀性能。值得注意的是,热压烧结过程中将不可避免导致三维编织体z向纤维变形或翘曲,阻碍复合材料致密化而削弱其综合性能。借鉴建筑学理念,采用振动辅助注浆/真空浸渍手段实现超高温陶瓷浆料在三维碳纤维编织体内部的均匀填充,并基于前驱体低温补给烧结实现三维Cf/ZrB2-SiC复合材料的无压致密化,攻克了连续碳纤维与超高温陶瓷基体非均匀复合难题,解决了z向纤维翘曲或变形问题,实现了碳纤维损伤抑制,为三维Cf/ZrB2-SiC复合材料的工程化应用奠定了基础。采用纳米浆料刷涂/热压烧结组合技术实现二维Cf/ZrB2-SiC(0/90°)复合材料的低温烧结致密化,并研究了碳纤维预处理温度对复合材料微结构和力学性能的影响。碳纤维束经500℃预处理后制备的二维Cf-500℃/ZrB2-SiC复合材料的断裂韧性和断裂功达到最高值,分别为6.15±0.12 MPa·m1/2和1368 J/m2,归因于热处理降低碳纤维表面反应活性,弱化了纤维/陶瓷界面结合力,促进了纤维桥联和纤维拔出等增韧机制。同时碳纤维预处理能显著提升二维Cf/ZrB2-SiC复合材料的抗热冲击性能,二维Cf-500℃/ZrB2-SiC复合材料的临界热震温差为764℃。二维Cf-500℃/ZrB2-SiC复合材料经1950℃/1000s氧乙炔考核后整体保持维型,但其层状结构导致表面氧乙炔冲刷区域出现氧化层剥落的现象,难以满足工程化对非烧蚀热防护材料的应用需求。采用振动辅助浆料浸渍/热压烧结工艺(VSI+HP)实现三维Cf/ZrB2-SiC复合材料的可控制备,三维Cf/ZrB2-SiC(VSI+HP)复合材料的断裂韧性和断裂功分别为5.34±0.13 MPa·m1/2和1104 J/m2,较浆料浸渍/热压烧结制备的Cf/ZrB2-SiC(SI+HP)复合材料分别提升了25%和90%,归因于断裂过程中的裂纹偏转、裂纹分叉、纤维桥联和纤维拔出等多重机制的耦合效应。三维Cf/ZrB2-SiC(VSI+HP)复合材料经水淬热冲击试验后临界热冲击温差为788℃,高于传统超高温陶瓷材料热震温差值(?Tc?500℃)。三维Cf/ZrB2-SiC(VSI+HP)复合材料经1500℃/1h静态氧化后结构保持完整且表面由致密Si O2玻璃层密实包覆,表现出优异的抗氧化性能。复合材料经1800℃/1000s氧乙炔考核后结构完整,线烧蚀率低至-1.70×10-4 mm/s,Zr O2颗粒对熔融Si O2相的钉扎效应缓解了Si O2氧化层挥发,避免复合材料进一步发生氧化烧蚀,揭示了三维Cf/ZrB2-SiC复合材料的烧蚀机理。采用机械振动辅助注浆/真空浸渍/前驱体低温补给组合工艺实现三维Cf/ZrB2-SiC(VSI+VI+PIP)复合材料的高陶瓷含量均匀引入及无压制备。三维Cf/ZrB2-SiC(VSI+VI+PIP)复合材料表现出优异的室温及高温力学性能,室温弯曲强度为385±74MPa,断裂功为3723 J/m2,1400℃和1800℃高温弯曲强度分别为420±28 MPa和129±31 MPa,优异的力学性能归因于断裂过程中裂纹偏转、裂纹分叉、纤维桥联、成束纤维拔出和界面脱粘等多重增韧机制的耦合效应。三维Cf/ZrB2-SiC(VSI+VI+PIP)复合材料的临界热冲击温差ΔT为962℃,残余强度保留率为70%,大幅度提升了ZrB2基超高温陶瓷材料的损伤容限。考核三维Cf/ZrB2-SiC(VSI+VI+PIP)复合材料的抗氧化和耐烧蚀性能。三维Cf/ZrB2-SiC(VSI+VI+PIP)复合材料经1400℃和1500℃静态氧化后表现出非烧蚀特性,表面均由致密Si O2氧化层紧密包覆。复合材料经2250℃/60s氧乙炔考核后结构保持完整,表面由Si O2包覆的Zr O2核壳式结构覆盖,线烧蚀率为-2.33×10-3mm/s。2250℃/360s氧乙炔考核后,复合材料表面氧化层整体出现剥落,但复合材料整体保持维型,线烧蚀率增加到-3.06×10-4mm/s。氧化层剥落后复合材料由多孔Zr O2层包覆,且Zr O2晶粒长大弥合颗粒间的间隙及碳纤维氧化后残留的孔隙,一定程度抑制三维Cf/ZrB2-SiC(VSI+VI+PIP)复合材料内部的氧化烧蚀。
其他文献
水分解制氢是获取氢气的重要途径之一,目前制约其发展的主要因素是缺乏成本低廉、性能卓越的催化剂。过渡金属化合物(例如过渡金属氧化物、硫化物、氮化物、碳化物、磷化物等)由于相对较低的成本和良好的催化活性引起了研究者的广泛关注,在催化水分解领域展现出良好的应用前景。镍元素作为贵金属铂的同族元素,在电子结构上与铂具有相似性,因此镍的部分化合物表现出良好的催化析氢活性。本论文旨在开发过渡金属镍基催化剂,通过
约束建模与估计是目标跟踪领域的一个重要研究方向,在基于机载/星载雷达的地面目标跟踪,江/河/港口舰船目标的监视与跟踪等军事/民用领域均有广泛的应用前景。道路、航线或航道等对目标运动构成的约束关系包含着关于目标状态的先验信息,在跟踪系统中描述和利用约束信息可显著提升跟踪精度。现有研究成果主要集中在空间约束即道路、航线等完整、确知的等式约束建模与估计上,然而在实际应用中,经常无法完全确定精确的等式约束
微流控技术作为一种新兴的技术平台被广泛用于结构精巧以及组分多样性的微纳米材料合成,其中利用结合有液滴生成与纤维纺丝过程的液滴微流控技术制备液滴填充型多腔室纤维是近些年生命科学和材料学等领域的研究热点。这类多腔室纤维凭借其独特的表面形貌、多层次结构以及良好的生物相容性,被广泛用于环境保护、生物医学和多功能复合材料等前沿领域。一方面,基于外部纤维基质良好的机械性能以及可视化特点,通过操纵纤维来灵活调控
近年来,大功率永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)伺服系统凭借其高精度、高功率密度、快速频率响应和低噪声等优点,正逐步替代现有液压伺服等结构,被应用在冲压、切割、金属成型等专用伺服产品中,应用场合涵盖国民经济快速发展以及国防建设需要的多个方面,如航空航天、轨道交通、重型设备等。虽然国产品牌在小功率通用伺服方面的技术水平和市场份额不断提升,但
微纳颗粒的非接触捕获和操控在分子生物学、生物化学、纳米制造等领域有重要应用价值。实现微粒捕获的光镊手段大致可分为传统光镊、金属等离激元光镊和电介质纳米天线光镊三种。传统光镊使用高度汇聚激光束形成的三维势阱捕获微粒,但受到衍射极限的制约;金属微结构利用表面等离激元的强局域场捕获微粒,但无法避免光吸收和光损伤;电介质纳米光镊能够实现与金属微结构相比拟的强局域场,并避免光毒性对微粒的损伤,因此引起人们的
近年来结构健康监测技术在全球得到了快速发展和应用,我国在许多大型桥梁上安装了较大规模的健康监测系统。这些监测系统累积了海量的监测数据,然而大型桥梁的服役环境恶劣,其健康监测系统的大部分功能模块均于户外工作,难以避免地因为硬件、软件故障产生多种类型异常数据。大量的实桥监测数据分析表明,大型桥梁健康监测系统中存在较多的异常数据。这些异常数据随机分布于监测数据中,常导致监测系统的虚假预警,同时也严重影响
高速飞行器的光电窗口对于探测器至关重要,易受高能武器的干扰,因此高能武器防护技术就极其重要。热致变色薄膜由于具有瞬时高温特性,可以镀制在红外罩表面,由透明变为不透明,从而保护光电探测器。随着战场环境复杂化,整流罩等窗口由平面向共形过渡,共形整流罩能以流线型平滑地延伸到信号平台,降低空气阻力。实现共形整流罩表面均匀沉积,具有重要的研究意义。此外,在高温超导领域,氧化钒电阻随温度变化特性能够用于高温超
形状记忆聚合物及其复合材料是通过外部激励而产生主动变形的一种新型智能材料,具有形状记忆、主动可控大变形、变刚度等特性,可被设计制作为集驱动与承载于一体的部件,这类部件结构简单、可靠,在空间可展开结构方面具有极大的应用前景,有望部分替代复杂机械机构。本文针对环氧形状记忆聚合物及其纤维增强复合材料的力学行为进行了一系列研究工作,表征了材料的热力学性能,建立了形状记忆聚合物的本构模型、纤维增强形状记忆聚
聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)弹性体是一种重要的有机硅材料,由于其独特的物理化学性质而被广泛应用于柔性传感器、电子皮肤、生物医学等领域。但是由于传统的PDMS弹性体的力学性能相对较弱,它们在使用过程中很容易受到损坏,另外由于体系中不可逆的交联结构,目前大多数聚硅氧烷材料在受损后往往无法恢复其原始功能,因此开发具有自修复性能和可循环加工性能的有机硅材料对于延长其
大型钢制储罐结构是油气存储的主要结构类型之一,该类型结构的安全性对我国的能源安全有着重要影响。由于油气产品的易燃、易挥发性质,油气泄漏导致的可燃气云爆炸事件时有发生。在可燃蒸气云爆炸或飞溅物冲击作用下,薄壁钢制储罐极易产生较大的塑性变形或穿透破坏,进而导致内部可燃物质泄漏,产生二次爆炸乃至连环爆炸,造成更大的经济和人员损失。然而,国内外相关标准以及已有研究尚未提出对钢制储罐结构进行抗爆抗冲击防护的