NADH脱氢酶调控丝状真菌Podospora anserina降解木质纤维素及子实体发育研究

来源 :深圳大学 | 被引量 : 0次 | 上传用户:pittashen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
化石能源的过度开采和资源匮乏,导致一系列难以恢复甚至永久性的环境问题。为实现可持续发展,向生态文明迈进,世界能源的格局,必须从化石能源向清洁能源转换。利用生物转化将木质纤维素转化为生物乙醇,不仅大大弥补化石燃料的匮乏,还可以明显降低大气污染,成为国内外研究的重点课题。丝状真菌Podospora anserina(P.anserina)含有较多的与木质纤维素降解相关的蛋白,其中包括氧化还原酶类。为探究氧化还原酶NADH脱氢酶(NADH dehydrogenase,ndh)对丝状真菌P.anserina利用木质纤维素的影响机制和其他生理过程的调控,我们通过SplitMarker方法,对三个NADH脱氢酶基因(Pa-1-22770,Pa-2-7140,Pa-2-13790)Pandh1、Pandh2和Pandh3进行定点敲除,并通过抗性筛选、PCR验证和Southern Blot验证得到阳性转化子,成功获得单突变菌株△Pandh1、△Pandh2和△Pandh3,并通过遗传杂交的方法构建多重突变体△Pandh1△Pandh2、△Pandh1△Pandh3、△Pandh2△Pandh3和△Pandh1△Pandh2△Pandh3,同时构建回补菌株△Pandh3-cpm。我们对各菌株进行生长表型、碳源替代、次生代谢产物等方面的比较分析,并测定他们对木质纤维素材料的降解能力。实验结果可知:(1)△Pandh3与野生型菌株相比,在生命过程中没有子实体的形成。(2)△Pandh3菌落生长明显延迟,在第三天和第五天分别菌落直径减小到野生型的81.8%和88.2%,且菌丝出现明显的色素沉着现象;同时,△Pandh3的生命周期得到明显延长,为野生型的2.3倍。(3)各突变体在不同碳源的培养基上生长速率均有所降低,特别是在木质素中,三重突变菌株△Pandh1△Pandh2△Pandh3的菌落直径仅为野生型的79%,在微晶纤维素碳源上,菌落的生长同样受到了抑制。(4)DAB染色实验显示,△Pandh3菌体染色程度明显降低。(5)HPLC分析发现,与野生型相比,△Pandh3突变体中ATP含量略有减少,AMP含量显著增加,表明△Pandh3突变体中AMP/ATP比值明显升高。(6)通过酶活力测定显示,各突变体的NADH脱氢酶酶活和滤纸酶活均大大降低,其中△Pandh2△Pandh3菌株的NADH脱氢酶酶活下降最为显著,仅为野生型的50%;而△Pandh1△Pandh3的滤纸酶活相当于野生型的53.5%。由上述数据结果,我们可以得出以下结论:(1)NADH脱氢酶在丝状真菌利用木质纤维素的过程中,起着重要作用。(2)NADH脱氢酶通过影响线粒体呼吸链的最终产能,参与到丝状真菌子实体的形成过程中,是菌体生长发育的关键调节因子。
其他文献
社会文明的进步在不断攻克很多疾病的同时,也因为生活节奏的加快和压力的增加带来了新的全球化疾病,其中致死率最高的当属心血管疾病。短轴cine MRI(cine magnetic resonance imaging,心脏磁共振短轴电影图像,后文中常简称为MRI)的左心室(LV)心肌力学性能分析对于心血管疾病的诊断和治疗至关重要。点特征提取是追踪心肌运动的重要基础,然而,左心室心肌显得高度均匀,并且在短
随着电动汽车的快速发展,人们对锂离子电池能量密度的要求也越来越高。硅基负极材料由于具有较高的理论容量(4200 m Ah g-1,Li4.4Si)、较低的放电平台(<0.5 V vs.Li/Li+)、丰富的储量等优点,吸引众多的研究者投身其中。然而,硅基负极材料在充放电过程中巨大的体积效应使得负极活性物质粉化后与集流体脱落,SEI膜不断形成和破坏,消耗大量的电解液。此外,硅负极材料的导电性较差(<
高级氧化技术被广泛用于降解水环境中难降解有机污染物,并取得良好效果。近年来,通过在电催化氧化高级体系中引入过硫酸盐能够在阴极区域原位生成比羟基自由基(·OH,E0=2.74 V)氧化能力更强的硫酸根自由基(SO4·-,E0=2.5–3.1 V),进一步加强电催化高级氧化体系的氧化能力。因此,电化学活化过硫酸盐协同电催化高级氧化耦合技术广受关注。本论文选取过二硫酸钾(PDS)进行研究,首先,通过阳极
在21世纪经济全球化的时代背景下,当代博物馆的社会职能不断扩大,成为集收藏、研究、展览、教育和休闲娱乐于一身的多元文化场所。作为我国文化事业的重要组成部分,博物馆代表着一个城市乃至一个国家的文化形象,更是衡量一个社会文化繁荣程度的重要指标。近十几年来,我国各地的博物馆建设持续升温,无论是场馆的建设数量、规模,抑或是场馆的服务性能、展览品质等,都处于一个快速上升的过程。而随着当代博物馆职能的不断扩大
饮用水安全一直是人们关注的热点话题之一。随着检测仪器的精密度提高,越来越多的饮用水安全问题出现在大众的视野中。因此为了提高饮用水质量并确保饮用水安全性,饮用水净化工艺也在不断的更新换代。离子交换树脂选择范围广,抗污性能好,价格低,再生性能优异,被广泛地应用于饮用水处理领域。但是由于水中存在有机物、氯化物等物质,在饮用水处理过程中,离子交换树脂会产生氮交换副产物,例如亚硝胺。这些有毒有害的副产物会损
为了满足临床应用要求,通常需要在羟基磷灰石(Hydroapatite,HA)分子结构中掺入少量的微量元素。然而HA的韧性性能低、脆性性能高,在临床应用受到限制,为了满足骨修复工程中支架材料的性能要求,可以通过添加另一相或多相来提高材料的性能。此外,HA复合材料总体性能很大程度上受到界面结合能力的影响,因此对界面性能的研究无论从学术角度还是HA复合材料的应用方面都有重大的意义。目前通过实验对HA复合
羟基磷灰石(Hydroxyapatite,HA)作为一种新型仿生材料,其良好的生物相容性、生物活性、以及可进行离子交换的优良特性,让其一直以来是生物材料及环境功能材料方面的研究热点。本文将HA与氧化石墨烯(Graphene oxide,GO)进行复合,以硬模板法制备复合微球,以提高药物负载效率。同时以HA、GO与壳聚糖(Chitosan,CS)复合,乳化交联成球,制备出两种负载与释放性能优异且形貌
头孢菌素是世界上使用较为广泛的半合成抗生素,在临床使用中多数头孢类抗生素生产的中间体为7-氨基头孢烷酸。7-氨基头孢烷酸主要来自头孢菌素C脱酰作用,主要脱酰方式有化学法、二步酶法和一步酶法。化学脱酰法具有环境不友好且反应条件苛刻等缺点已经被市场淘汰。二步酶法已经基本应用于工业生产,但二步酶法转化率低,反应不易于控制。一步酶法可以直接将头孢菌素C脱酰转化为7-氨基头孢烷酸,具有高转化率、高经济性和环
第三代测序技术自问世以来在临床分子诊断中扮演着越来越重要的角色,尤其在基因组测序、甲基化研究、突变鉴定(SNP检测)等方面。测序技术的不断发展使得测序成本逐年下降,测序数据量急剧增加,如何存储和传输庞大的测序数据是当前亟需解决的问题。数据压缩技术可以有效减少测序数据的存储空间并减少传输时间。通用压缩工具未能很好的利用DNA测序数据的数据特性,对测序数据的压缩比存在一定的局限。而目前DNA测序数据的
关节软骨(Articular cartilage)是一种存在于骨表面关节间极其复杂的活性结缔组织,它主要提供一个光滑的接触表面以降低关节间的摩擦,承受身体负荷。关节软骨损伤是骨科临床常见疾病,且受损关节软骨一般不能进行自我修复,因此关节软骨损伤是导致肢体残疾的主要原因之一。微骨折技术、关节置换术、骨软骨自体移植、自体软骨细胞移植虽然可在一定程度上修复受损软骨,但有限的供源、感染的风险和免疫排斥使这