微带多频与可重构差分滤波器的设计

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:xiegenda
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近些年来,随着移动通信技术的发展形势愈发迅速,对射频前端器件高性能与高品质的要求愈发严格。多频段与可重构差分滤波器作为移动通信系统中的关键组成部分,其工作性能的优劣影响着系统的可靠性。同时,与传统的单端器件相比,差分器件能够更加有效地抑制外界噪声和干扰,受到国内外学者越来越多的关注。在这种背景下,本文提出并设计了两款高频率选择性的双频差分带通滤波器、一款频率可独立控制的四频差分带通滤波器以及一款具有恒定绝对带宽和低通带插入损耗的双频可重构差分带通滤波器。具体划分为下述主要内容:(1)基于短路枝节加载谐振器设计了一款双频差分带通滤波器,实现了差模与共模的独立设计。同时,采用蚀刻有交指耦合线的阶梯阻抗微带线来增加输入端口和输出端口之间的耦合,并有效降低滤波器差模通带的插入损耗。通过改变谐振器的物理尺寸,能够自由调整奇模与偶模频率,实现了双通带的准独立控制。通过仿真和实测,该滤波器两个通带的中心频点被设计于1.98和2.50 GHz,工作频率范围内的最小插入损耗依次低于2.17和1.71 dB,20 dB的阻带抑制扩展到了5.6 GHz处。(2)基于非对称短路枝节加载谐振器分别设计了一款双频和四频差分带通滤波器。通过改变多谐振路径谐振器的物理尺寸,分别实现了两个和四个差模通带中心频率的独立可控。滤波器的耦合系数与品质因数可以由谐振器间、谐振器与微带馈线间的耦合间距调控,进而实现两个和四个差模通带相对带宽的准独立控制。通过仿真和实测,该双频滤波器的两个通带的中心频点被设计于2.51和3.52 GHz,3 dB相对带宽分别为6.47%和6.18%;该四频滤波器的中心频率为2.54、3.46、4.5和5.2GHz,3dB相对带宽分别为6.45%、5.68%、3.93%和4.91%。(3)首次提出了一种可以独立调节两个差模通带、具有高共模抑制以及恒定绝对带宽的双频可重构差分带通滤波器。谐振器的两条谐振路径的谐振条件相互独立,使加载变容二极管的数量减少一半,有效地减小了通带的插入损耗。通过选择变容二极管的加载位置和调整耦合距离,谐振器之间的耦合系数和输入输出端口的品质因数可以很容易地通过物理结构来控制,进而实现了恒定的绝对带宽特性。通过仿真和实测,当调谐电压从1V变化到30V时,第一个可调通带的中心频率范围为2.55~3.08GHz,通带插入损耗为1.52~2.87 dB;第二个可调通带的中心频率范围为3.33~3.84GHz,通带插入损耗为1.81~3.24 dB。
其他文献
随着电子信息技术等相关技术的发展,视频已经逐渐成为生活中不可或缺的信息媒介。当前各种数字环境中存在的海量视频数据具有着极大的价值,因此,利用计算机进行视频的内容理解、信息挖掘已经成为研究者的重要课题。近年来,深度学习在图像处理等领域取得了前所未有的成功,这也促使了基于视频的人体行为识别技术的发展。目前行为识别领域还存在着诸多挑战,比如人体行为在类内和类间均有较大的变化,不同视角、不同速度下的同一类
学位
近年来,随着计算资源以及数据规模的大幅增长,深度学习取得了前所未有的成功。在多个领域和多种任务上,如图像识别、语义分割、文本分类、语音识别、多模态学习等,深度学习都发挥了举足轻重的作用。然而最近的一些研究发现,对抗样本广泛存在于各种深度学习领域,给深度学习系统的现实应用带来了巨大的威胁,尤其是一些安全性敏感的深度学习系统,如自动驾驶、行人重识别、智慧医疗等。对抗样本是一些在自然图像上添加人为构建的
学位
近年来,以深度卷积神经网络(Deep Convolutional Neural Network,DCNN)为代表的人工智能技术迅速发展,在图像识别等特定领域的性能已经接近甚至超过以人类为代表的灵长类动物。然而,在目标/背景复杂多变、遮挡和干扰等复杂开放场景下,DCNN模型的性能容易急剧下降,而灵长类动物仍能快速、准确、稳定地识别目标,这表明现有的DCNN模型在数据驱动的模式下,还很难像灵长类动物大
学位
视频时空定位任务是计算机视觉和自然语言处理技术两个领域的交叉融合,可被广泛地应用于安防监控、视频检索等领域。关系时空定位和多句式查询文本的目标时空定位是视频时空定位任务中的两个新兴的研究分支。现阶段的关系时空定位方法利用目标空间特征构建目标之间的动态关系特征,通过信息的单向传递定位符合关系的多目标时空轨迹,然而其忽略了信息的双向传递对定位的指导作用,且错误的信息在单向传递过程中难以被矫正。同时,现
学位
近年来,随着深度学习技术的迅速发展,基于有监督学习的方法在各种视觉任务上达到了很好的性能。然而,这类方法依赖于大量有标签的训练样本,学习得到的分类器往往能够较好地识别训练过程中见过的样本类别,而无法很好地迁移到训练中未见过的其他样本类别。为了解决这种缺少有标签数据的学习任务,零样本学习(zero-shot learning)受到广泛关注,即一个神经网络模型将在已知类别的样本数据上学习到的知识迁移到
学位
现代军事战争大多发生在复杂地、海环境中,目标所处背景对于雷达探测与识别的影响不容忽视。通常将目标所处背景看作是单层介质粗糙面,只研究粗糙面与上方目标的电磁散射问题。但是实际中的自然环境组成复杂,如植被覆盖的土壤、雪层覆盖的土壤、溢油海面、浮冰海面等通常为多层介质。在研究时,除了粗糙面与上方自由空间的散射问题,对于上层和下层粗糙面之间发生的电磁波透射问题也要重视。对分层粗糙面与目标复合电磁散射进行研
学位
图像去噪作为一种计算机视觉、图像处理领域的基础性任务,在生产制造、医学健康和卫星遥感等领域具有重要的应用价值。图像去噪是一种逆问题,其目的是从噪声观测中估计出未被噪声污染的图像,实现图像质量的增强,继而使后续的图像处理、分析等环节免受噪声影响。在过去几十年,基于不同理论的图像去噪方法相继被提出。其中,传统方法原理清楚、计算简单,然而去噪效果不够理想;基于神经网络,特别是深度神经网络的方法,近些年在
学位
有限元方法(Finite Element Method,FEM)作为一种计算精度较高的全波算法,常被用于具有复杂媒质、复杂几何结构的目标的电磁特性分析,但由于该方法基于体网格离散计算区域,网格量随目标的电尺寸的增加而剧烈增长,在进行诸如带罩天线阵列电磁辐射、复杂环境下电磁散射等电大尺寸目标的电磁特性分析时,常见的PC机甚至工作站往往无法满足其计算所需的庞大的计算资源,严重限制了有限元方法在实际工程
学位
通过成像仪获取的高光谱遥感图像具有光谱分辨率高、波段频率密集的优点,其所包含的丰富光谱和空间信息使得高光谱遥感图像在包括军事和农业等各个领域都有着广阔的应用范围和前景。然而,由于成像设备的限制,高光谱遥感图像的光谱分辨率在提高的同时,还存在空间分辨率降低的问题。空间分辨率的下降使得采样得到的图像数据中存在大量混合像元,每个像元对应的真实地物空间中包含多种物质,而成像设备获取的像元光谱曲线是由多种不
学位
锑烯因独特的褶皱蜂窝状结构和优良的光电特性,被广泛应用于光电器件,纳米电子器件等领域。然而单一锑烯材料的固定能带结构以及较高的载流子复合率使其应用受限。将锑烯与其他二维材料构建范德华异质结,可以避免单一材料的缺陷,同时还会出现许多新颖的性质,使其在光电领域有着更加广泛的应用。本文通过Materials Studio软件,采用第一性原理计算方法,对锑烯/Ga Te和锑烯/MoX2(X=S,Te)范德
学位