敏捷卫星多目标在轨协同观测技术研究

来源 :中国科学院大学(中国科学院微小卫星创新研究院) | 被引量 : 0次 | 上传用户:psh860525
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在对地观测与空间目标探测的应用中,森林火灾多火点蔓延、空间碰撞碎片爆发等突发情况会产生对大量目标快速响应观测的需求。敏捷卫星具备任务响应速度快、探测精度高,姿态机动能力强的特点,通过多颗敏捷卫星的有序调度可以满足以上观测需求。敏捷卫星多目标的协同观测问题对多星组网协同规划与调度提出了很高的时效性与星间信息动态交互的要求,同时为了满足卫星在轨实时响应,需要针对卫星的计算能力进行算法的设计与优化。本文主要以对地观测中的区域静态多目标问题及空间目标探测中的空间动态多目标协同观测问题作为基础问题开展敏捷卫星多目标在轨协同观测技术研究。本文的主要研究工作及创新点如下:(1)针对区域静态多目标的协同观测问题,进行了多目标观测任务的分析与建模,针对单星任务规划创新性地提出了一种启发式前后向链条优化组合在轨多目标观测序列规划方法,实现面向在轨应用百毫秒级大量目标观测路径的规划。(2)在多星协同层面设计了基于约束的分层协同观测策略,策略层通过能力划分、代价划分和简单优先的并行原则进行目标分配,规划层采用链条优化组合方法进行观测序列求解。该算法与遗传算法及模拟退火算法进行仿真对比分析,实验结果表明方法具有低计算开销、高收益的特点。(3)针对空间动态多目标的协同观测问题,设计了协同规划与调度流程,根据立体定位、引导交接、多目标轮巡等关键环节完成协同观测模型建模,对系统任务规划及调度进行了数学建模并提出了基于分组分层反馈机制的协同任务规划及调度方案求解框架,有利于系统调度任务的实时迭代优化。(4)在空间动态多目标的协同观测模型量化分析基础上,提出了基于投影法的二重覆盖分析与全球通信多重约束星座设计方法,降低了星座设计复杂度。构建低轨敏捷星座的网络模型,开展了协同观测任务的信息流分析。结合不同任务信息传输需求分析,提出了面向协同任务的基于动态链路负载加权时延优化路由算法,实验结果表明该方法在星间有限传输能力下满足负载均衡与高时效传输的星座协同信息网络传输要求。(5)根据低轨敏捷星座的结构对称性与运动周期性,设计了在全局与区域层面分组分层的多重调度策略,提出了全球区域管控值守分组策略和基于相对运动分析的动态快速分组策略。在任务规划与观测窗口调度求解问题中,提出了一种综合观测时长评估法与重要最长尽早分配原则结合的快速求解方法,实验结果表明该方法在较少的计算代价下实现了围绕任务目标的快速观测分组与规划调度方案求解。本文从低轨敏捷星座多目标协同观测问题的信息获取、信息处理、信息传输环节开展分析,在观测与网络的量化模型基础上,构建了多星协同与资源调度的架构,提出了面向协同任务的基于动态链路负载加权时延优化路由算法、综合观测时长评估法与重要最长尽早分配原则,并针对任务与资源的时空匹配性开展了全局与区域的管控策略研究。通过仿真分析,实验结果表明本文提出的任务规划模型、规划调度算法合理有效,研究中充分考虑了在轨的可实现性,算法设计具有低复杂度与高收益的特点,工程应用价值突出,并丰富了多目标协同观测问题的理论研究。
其他文献
学位
学位
学位
学位
学位
学位
学位
第五代移动通信系统(5G)在峰值速率、频谱效率和区域通信容量等方面,相比第四代移动通信系统(4G)有着巨大提升。不仅如此,5G还将毫米波频段纳入了应用范畴以进一步提高速率和容量。但毫米波由于其本身高路径传播损耗的特性一直以来都没有被广泛应用,大规模多输入多输出技术(massive MIMO)为毫米波的成功应用提供了一种可行的方案,该技术能通过部署大量天线带来的高增益对抗毫米波自身的路径传播损耗。在
学位
近年来,卫星导航系统在人们的生活中发挥着越来越大的作用,各大卫星导航系统中,美国的GPS系统发展最成熟;我国的北斗导航卫星系统也已于2020年向全球提供服务。随着全球导航卫星系统在智能设备及传感器网络中的普及,人们对导航信号接收机的性能及功耗要求更高。在导航卫星系统信号接收中,捕获是基带信号处理的第一步,其结果关系到后续同步和解算的准确性。捕获过程需要进行大量的相关运算,是整个接收机功耗较大的部分