基于团簇空间分布及诱导成核的捕水强化表面设计

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:suan11111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在过去的几十年中,缺水一直是最严重的全球危机之一,并严重威胁了一些干旱和发展中国家数十亿人的生存。潮湿空气中水的捕获是淡水获取、减湿等生产生活中的关键技术之一,其中优异的集水功能表面设计是研究热点。具有高效集水功能表面的成功设计不仅可以解决许多地区的淡水短缺问题,缓解全球淡水的压力,同时还可以满足许多高湿度场合的除湿需求。大多数功能表面设计的出发点是基于壁面微纳结构或润湿异性结构的界面输运效应,强化凝液的输运或液滴的运动和脱落。本文另辟蹊径,根据冷凝过程中近壁区分子团簇的分布、演化现象,从仿生的设计思路出发,提出了一种强化蒸汽冷凝的仿生结构。利用多孔铜柱来模拟天竺葵表面分布的数量巨大的高度300μm左右的纤毛结构,强化团簇的捕获与核化。同时为了验证表面的集水能力,搭建了表面的冷凝集水试验平台,针对所制备的不同类型的表面进行集水能力的测试。最后综合考量了表面的润湿性、烧结铜粉直径、铜柱直径、铜柱高度等因素对表面集水能力的影响。实验结果表明,表面的空间结构能为团簇的演化和成核提供位点,促使团簇更多的突破临界尺寸而成核,进而提高表面的冷凝集水效果。又以高度为300μm的表面集水能力最强,高度为600μm的表面集水能力次之,高度为900μm的表面集水能力相对最差。此外,对于亲水多孔铜柱而言,因为液滴会在表面毛细力的抽吸作用下进入铜柱内部,会使液体在多孔铜柱内部滞留,因此相对于亲水实心铜柱而言,亲水多孔铜柱的集水效果并未显著增加。同样是因为液体的滞留作用,烧结铜粉直径(影响表面孔隙率)对于亲水多孔铜柱集水能力的影响可以忽略。对多孔铜柱结构进行疏水化处理,可以一定程度上避免凝液滞留于结构内部,从而提高其纤毛仿生设计的效果。综合实验结果表明,所设计的最佳表面为高度为300μm的疏水多孔铜柱,其集水能力高达140 mg·cm-2·h-1,是光滑表面的近2.5倍。
其他文献
天然气水合物作为一种新型清洁能源,因其能量密度高、资源密度优、全球分布广,从而引起了世界研究人员的高度关注。全球几乎97%的水合物资源蕴藏于海洋中,我国海域天然气水合物储量更是高达800亿吨油当量。然而,海洋水合物传统开采方法易引发海底储层塌陷、斜坡失稳等地质灾害及产砂堵塞等开采障碍,导致水合物开采产气效率低、持续性差等难题。CO2置换开采水合物具有环境友好及维持储层稳定性的优点,因此,探明海洋天
学位
随着电子、光电子、电力电子等设备逐渐向高功率、高结构紧凑性方向发展,核心部件单位面积的发热量急剧上升,热流密度达到100 W/cm~2以上,甚至接近1000 W/cm~2。为了解决高热流密度散热问题,微/纳米结构表面、具有吸液芯结构的热管、微通道相变冷却等技术逐渐被应用。在上述传热技术中,薄液膜在高热流下的沸腾特性是影响散热系统性能的关键,然而目前对薄液膜的相变传热规律尚不清楚,包括:过热度、液膜
学位
燃烧流场的温度、压力、气流速度、组分浓度等参数是判断燃烧状况的重要依据,也是节约能源、减少污染物排放必不可少的重要指标。燃烧场的非接触式在线诊断有着重大的需求,本文针对传统测量方法的不足,例如响应慢、测量精度低、寿命短、难以实现在线测量等,使用了非接触式的可调谐半导体激光吸收光谱技术(TDLAS)测量方法,研究了燃烧火焰温度和气流速度的实时在线测量方案。基于气体吸收光谱理论和多普勒频移效应,利用时
学位
伤口愈合是一个复杂的动态过程,正常的急性伤口可以在一定时间内恢复,慢性伤口的愈合时间长并且容易复发。创面活性氧(reactive oxygen species,ROS)含量过高或者伤口处持续产生的ROS将会导致慢性伤口难以愈合,在创面进行抗氧化剂治疗,运用自由基清除剂来减少ROS,减少ROS的毒性作用时间能加快慢性伤口的创面愈合。依达拉奉(edaravone,Ed)是一种良好的抗氧化剂,能清除自由
学位
太阳能界面蒸发技术采用清洁能源太阳能进行海水淡化,既可以减少化石能源的使用,降低环境污染,又能产生淡水,缓解淡水危机,是一种前景广阔的先进技术。典型的界面蒸发过程是将蒸发体漂浮于海面上进行光吸收、热转换、水输运和蒸发,其中界面蒸发体的性能至关重要。理想的蒸发体应该具有吸水性能好,阻热能力强,机械强度高等特性,除此之外,蒸发速率和长期稳定性也是评判其能否实际应用的重要指标。针对以上问题,本论文提出了
学位
神经退行性疾病(Neurodegenerative diseases,ND)和创伤性脑损伤(Traumatic brain injury,TBI)等对社会的影响越来越大。神经干细胞(Neural stem cells,NSCs)可以通过自我更新并分化为中枢神经系统中的主要细胞类型来替代受损的神经细胞,而单纯移植的NSCs成活率较低。越来越多的研究显示,导电水凝胶可以提供NSCs生长所需的仿生骨架,
学位
随着社会对环境问题意识的提高,可持续、可靠、高效、有竞争力的能源变得越来越重要。超级电容器作为介电电容器和常规电池的中间过渡器件,因其具有可逆性好、充放电速度快、循环寿命长和高能量密度而广受重视。而合理设计和合成纳米结构的电极材料对于开发高性能超级电容器至关重要。本论文以具有独特结构和氧化还原性能的纳米Co类普鲁士蓝(Co PBA)及其复合材料为电极材料,对其进行了研究。采用牺牲模板法合成Co类普
学位
工业循环冷却水系统作为工业生产的重要组成部分,对于水资源的合理利用具有重大意义。然而浓缩后的工业循环冷却水在换热器壁面的结垢问题不仅会降低换热效率,还会导致垢下腐蚀甚至非计划停车,为工业生产带来安全隐患。近年来,电化学除垢因其能够直接从循环水主体去除成垢离子,有效提高浓缩倍数,减少排放量,被誉为环境友好型技术,引发广泛关注。虽然电化学除垢技术具有无法替代的优势,但除垢速率低,能耗较高和阴极清洗再生
学位
工业循环冷却水系统的稳定是工业生产正常运行的重要前提,由于微生物滋生问题对水质的影响相对较大且很难从根源上控制,因此被视为工业循环水处理中最大的挑战。对于电化学水处理技术,研究者们普遍致力于如何提高单位能耗下的除垢速率而对电解附带的防腐和杀菌效果研究较少。本论文针对工业循环冷却水中吸氧腐蚀及微生物腐蚀的问题,系统地研究了电解除垢工艺对工业循环水腐蚀性和水中微生物的影响,提出了弱电解过程与低浓度余氯
学位
佐剂是现代疫苗必不可少的组成成分,可辅助抗原增强机体免疫原性。在批准用于人体疫苗的铝盐佐剂中,氢氧化铝(AlOOH)佐剂以其出色的安全性和较低的合成成本备受人们关注。随着人类社会对疫苗的需求不断增加,佐剂的批量化生产工艺也成为疫苗研发领域的热点,当前通过煅烧、水热等方法合成AlOOH佐剂的工艺较为成熟,但生产过程的不连续性、高温及高压的合成条件限制了该工艺的进一步放大。新兴的全混流反应器(CSTR
学位