硅基阵列波导光栅及其应用

来源 :东南大学 | 被引量 : 0次 | 上传用户:otaku2456
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,伴随着全球通信网络中数据流量的指数型增长,对高速数据传送的需求也日益强烈,光通信技术因其容量大、低成本、速度快且不怕电磁干扰等优点得到了广泛研究。除了用于长距离通信的高性能激光器、放大器、光纤等,在短距离通信方面,可以将各种交换及路由器件集成到单个芯片上的光子集成技术也得到了快速发展,其中就包括用于实现波分复用系统核心功能的光波分复用器,而阵列波导光栅因其可批量生产、尺寸小、通道数多等优点,相比于其他几种波分复用技术,具有更好的研究和应用价值。用于制作阵列波导光栅的材料有很多,尽管使用低折射率差的材料平台制作的阵列波导光栅具有插损小、串扰低等优点,但是高折射率差的SOI平台因为对光的局域性强可以实现更小的器件尺寸,并且与CMOS工艺兼容,可以和其他硅基器件实现大规模集成。本文主要围绕基于氮化硅(Si3N4)和绝缘体上硅(SOI)平台的阵列波导光栅进行了理论和实验研究。本文首先介绍了阵列波导光栅的工作原理,结合阵列波导光栅的光栅方程、角色散方程等给出了阵列波导光栅的设计流程;其次,基于SOI平台设计了一个8通道、通道间隔3.2nm的阵列波导光栅,建立了该阵列波导光栅的仿真模型,并基于仿真模型对阵列波导光栅的插损、串扰等进行了优化设计,并且使用抛物型渐变波导实现了阵列光栅频谱平坦化,优化后仿真得到的器件插损为2.39d B,串扰为-11.3d B,通道不均匀性为0.358d B。然后,根据优化的器件参数绘制了SOI阵列波导光栅版图并进行了流片,并对芯片进行了测试,得到器件插损为3.588d B,串扰为-13.485d B,通道不均匀性为2.627d B。同样,本文基于氮化硅平台设计了一个8通道、通道间隔为0.8nm的阵列波导光栅,建立了氮化硅平台阵列波导光栅的仿真模型,并基于仿真模型对阵列波导光栅的插损、串扰等进行了优化,并且使用MMI结构实现了频谱平坦化,优化后仿真得到器件的最优插损为1.3d B,串扰为-8.7d B,不均匀性为0.6d B,并且根据优化的器件参数绘制了氮化硅阵列波导光栅的版图。
其他文献
随着第五代(5G,5th Generation)移动通信系统的商用,5G开始为社会提供更高效的服务,跟随5G所研发的服务逐渐增多。近年来,人工智能技术的快速发展逐渐显示出了强大的能力,传统行业也在应用各种人工智能技术来提升效率。在通信算法中,有着许多高性能的算法,如大规模MIMO中基于预编码的相关优化算法,但其复杂度高,难以在实际系统中部署。因此,如何降低现有算法的复杂度也逐渐受到关注。人工智能技
随着移动通信和无线物联网技术及应用的迅猛发展,商业、医疗以及公共安全等领域都对面向终端与节点设备的LBS产生了广泛的需求。由于具有在复杂NLOS场景下实现较为准确定位的突出性能特点,无线终端的指纹定位技术已成为移动通信技术学术界近年来的研究热点。根据基于多站LTE终端指纹定位技术与系统研发目标及任务的规划安排,论文主要就LTE上行接收系统的设计与实现开展了具体研发工作,为研发目标系统获取高质量的终
毫米波和Massive MIMO是下一代移动通信中的关键技术。波长较短的毫米波有利于大规模天线面板的集成,而Massive MIMO可以通过波束赋形提供高方向性波束以补偿毫米波信号的传输损耗,二者融合而成的毫米波Massive MIMO能有效提高系统容量和能量效率。因此,毫米波Massive MIMO成为国内外通信领域研究的热点。当基站端与用户端同时采用波束赋形时,高效的波束管理可以显著提高毫米波
多射频多信道无线Mesh网络相比于单射频单信道无线Mesh网络,可以获得网络吞吐量的增加,网络健壮性的增强、网络可扩展性的提升以及网络容量的增加,从而获得更好的网络整体性能。本文围绕多射频多信道无线Mesh网络信道分配与路由联合优化算法展开研究,目的是提高吞吐量、降低时延,提升网络整体性能。本文的主要工作如下:首先,研究了多射频多信道无线Mesh网络信道分配策略以及路由技术。分析了典型的静态分配策
无线自组织网络传输不依赖于有线基础设施,且具有部署快速、扩展灵活、顽存性强等优点,被广泛应用于应急保障、突击部署以及抢险救灾等军民通信领域,已经成为现代无线通信技术的一个重要研究方向。设计和实现适合多种应用场景下的高性能无线移动自组织网络(High-performance Mobile Ad-hoc Network,HpMANET)是目前该领域技术研究与开发的一个重要方向。论文重点就HpMANET
随着5G的正式商用,作为5G关键技术之一的大规模MIMO技术受到了越来越多的关注。大规模MIMO技术在基站侧配置成百上千个天线单元,充分利用多天线带来的空间自由度,显著地提升了系统的传输速率和频谱效率。为了更好地评估和研究大规模MIMO系统的性能,针对大规模MIMO信道的研究必不可少。本文针对大规模MIMO信道特性,分析了大规模MIMO信道模型的近场效应和非平稳特性并研究了基于联合相关的大规模MI
第五代移动通信系统(5G,5th Generation Mobile Communication Systems)新空口(NR,New Radio)标准规范定义了灵活的参数集和帧结构,引入了大规模天线、波束赋形、新型信道编码方案等技术,旨在大幅提升以人为中心的移动互联网的同时,全面支持以物为中心的物联网业务,实现人与人、人与物和物与物的智能互联。大规模多输入多输出(MIMO,Multiple In
语音增强是前端声学信号处理的一个重要内容,其是语音质量提升的一种重要手段也是后续语音任务的前提与基础。然而,实际生活场景中存在各种各样复杂多变的干扰严重影响传播的语音的质量,因此如何提升带噪语音的质量是一项具有很大挑战性的工作。相比于传统的单通道语音增强技术,多通道语音增强技术能够额外的利用语音的空域信息,在一定程度上有利于提升复杂环境下的带噪语音的质量。本文对基于波束形成和时频掩蔽的多通道语音增
随着科技的迅猛发展,人们对于通信的高速率和高质量的要求日趋迫切。正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)技术已经被5G标准所采用。OFDM是多载波调制(MCM,Multi Carrier Modulation)技术的一种,可以实现串行数据的高速并行传输。OFDM系统的优势在于具有良好的抗频率选择性衰弱的能力、抗符号间干扰(ISI
非合作条件下的水声通信信号调制方式识别是水声信号处理的重要课题。在非合作条件下,宽参数区间的信号捕捉范围、海洋环境噪声、多径效应以及多普勒频移等都是辨识水声通信信号的障碍。本文针对水声通信特点,研究非合作条件下四种常用水声通信信号(二进制相移键控信号(BPSK),四进制相移键控信号(QPSK),二进制频移键控信号(2FSK),四进制频移键控信号(4FSK))的调制识别方法。具体工作如下:(1)本文