论文部分内容阅读
由于CO2的大量排放而诱发的温室效应问题,已引起全世界的广泛关注,实现CO2的高效捕集和分离成为当前研究热点。功能化离子液体(TSIL)被认为是一种极具应用前景的CO2吸收剂,但存在吸收容量低、粘度高和成本高等问题。为打破这一制约其工业化应用的瓶颈问题,需深入考察TSIL的吸收机制,掌握阴阳离子的匹配规律,从而定向设计出具有高吸收性能的TSIL吸收剂。为此,本文采用密度泛函理论(DFT)方法,分别对非质子型和质子型TSIL的微观结构特性和相互作用机制进行了系统考察,并揭示了其吸收CO2的反应机理,以期为新型TSIL吸收剂的开发设计提供理论指导。
对于非质子型TSIL,本文分别选取了具有不同侧链长度的1-乙基-3-甲基咪唑([Emim]+)和1-丁基-3-甲基咪唑([Bmim]+)为阳离子,乙酸根([OAc]-)为阴离子,对比分析了阴阳离子对形成前后的微观结构特性,并借助ESP、NBO以及AIM分析等,揭示了阴阳离子对间的相互作用本质,结果表明[OAc]-与咪唑环和侧链上的H质子分别形成了中等强度和弱氢键作用,且C1-H2…O红移氢键对离子对的稳定性影响最大。EDA结果表明离子对的相互作用主要是静电作用占主导,电荷转移和轨道重叠作用的贡献也较为显著。
对于质子型TSIL,本文选取二甲基乙二胺([DMEDAH]+)为阳离子,[OAc]-和取代酚基([4-F-PhO]-)为阴离子,基于溶剂化模型,探究了二氨基阳离子与不同阴离子间的作用机制,并预测了其与CO2的可能作用位点。结果表明溶剂水分子对质子转移具有促进作用,稳定离子对构型中除静电作用外,还存在中等强度的氢键作用。这类TSIL吸收CO2时,阳离子伯胺基团上的N原子与阴离子上O原子均易与CO2产生作用,且酚基阴离子与CO2发生作用的主导地位更明显。
本文采用DFT方法,分别考察了[DMEDAH][4-F-PhO]和[DMEDAH][OAc]吸收CO2的反应机理。基于阴阳离子与CO2不同的活性位点,设计了多条反应路径,通过对反应物、过渡态和产物的微观结构、键级、键能、静电势和电荷的分析,以及对不同反应路径下自由能垒、焓垒的计算等,发现[DMEDAH][4-F-PhO]的阴离子吸收路径在动力学上有利,阳离子吸收路径在热力学上有利,而[DMEDAH][OAc]为阳离子吸收机制。
对于非质子型TSIL,本文分别选取了具有不同侧链长度的1-乙基-3-甲基咪唑([Emim]+)和1-丁基-3-甲基咪唑([Bmim]+)为阳离子,乙酸根([OAc]-)为阴离子,对比分析了阴阳离子对形成前后的微观结构特性,并借助ESP、NBO以及AIM分析等,揭示了阴阳离子对间的相互作用本质,结果表明[OAc]-与咪唑环和侧链上的H质子分别形成了中等强度和弱氢键作用,且C1-H2…O红移氢键对离子对的稳定性影响最大。EDA结果表明离子对的相互作用主要是静电作用占主导,电荷转移和轨道重叠作用的贡献也较为显著。
对于质子型TSIL,本文选取二甲基乙二胺([DMEDAH]+)为阳离子,[OAc]-和取代酚基([4-F-PhO]-)为阴离子,基于溶剂化模型,探究了二氨基阳离子与不同阴离子间的作用机制,并预测了其与CO2的可能作用位点。结果表明溶剂水分子对质子转移具有促进作用,稳定离子对构型中除静电作用外,还存在中等强度的氢键作用。这类TSIL吸收CO2时,阳离子伯胺基团上的N原子与阴离子上O原子均易与CO2产生作用,且酚基阴离子与CO2发生作用的主导地位更明显。
本文采用DFT方法,分别考察了[DMEDAH][4-F-PhO]和[DMEDAH][OAc]吸收CO2的反应机理。基于阴阳离子与CO2不同的活性位点,设计了多条反应路径,通过对反应物、过渡态和产物的微观结构、键级、键能、静电势和电荷的分析,以及对不同反应路径下自由能垒、焓垒的计算等,发现[DMEDAH][4-F-PhO]的阴离子吸收路径在动力学上有利,阳离子吸收路径在热力学上有利,而[DMEDAH][OAc]为阳离子吸收机制。