纳米TiC/TiB2颗粒对轧制Al-Mg-Si合金组织与性能的影响

来源 :吉林大学 | 被引量 : 0次 | 上传用户:hanjiajiaji
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,已有研究指出纳米颗粒可以显著提高铸造铝合金的强塑性,并且与微米颗粒相比具有更好的强韧化效果。因此,纳米颗粒增强铝基复合材料在航空航天等领域具有潜在的应用前景。但高含量纳米颗粒存在易团聚难分散的瓶颈问题,一直没有得到很好的解决。导致纳米颗粒强化效果降低,甚至起到恶化作用,进而限制了纳米颗粒增强铝基复合材料的应用。塑性变形能够有效的改善纳米颗粒分布,并且变形量越大,效果越显著。冷轧工艺是工业生产铝合金薄板的主要加工方式,但目前还少见关于纳米颗粒对冷轧Al-Mg-Si合金板材的组织演变,力学性能及腐蚀行为的影响的研究。因此,通过塑性变形改善纳米颗粒分布,进一步改善和提高铝基复合材料板材的力学性能和耐腐蚀性能,具有重要的理论意义和工业化应用前景。本文采用“中间合金+搅拌铸造+冷轧制”法制备了纳米TiCp/Al-Mg-Si、纳米TiB2p/Al-Mg-Si和纳米(TiCp-TiB2p)/Al-Mg-Si冷轧板材;通过ARB工艺和CARB轧制工艺分别制备了单一Al-Mg-Si合金叠轧板材、单一3.0 wt%纳米TiCp/Al-Mg-Si复合材料叠轧板材和“Al-Mg-Si合金+3.0 wt%纳米TiCp/Al-Mg-Si复合材料(3.0-TiCp/M)”的复合叠轧板材和交互叠轧板材。研究了纳米单相TiCp、单相TiB2p和双相(TiCp-TiB2p)对Al-Mg-Si合金冷轧板材的组织演变和室温拉伸性能的影响规律;纳米TiCp和TiB2p对Al-Mg-Si合金冷轧板材的加速腐蚀、电化学腐蚀和浸泡腐蚀性能的影响规律及作用机制;高含量纳米TiCp(3.0 wt%)、双尺寸晶粒与双尺寸β″析出相的层状分布构型的形成及对强度各向同性的作用机制。本论文的创新点如下:1)揭示出单相纳米TiCp﹑TiB2p和双相纳米(TiCp-TiB2p)对Al-Mg-Si基体合金铸态和冷轧制+T6热处理态组织和室温力学性能的影响规律及机制:i)揭示出纳米TiCp﹑纳米TiB2p和双相纳米(TiCp-TiB2p)显著细化Al-Mg-Si基体合金铸态α-Al晶粒和冷轧制+T6热处理态的α-Al再结晶晶粒尺寸。细化效果由强到弱的顺序为:双相纳米(TiCp-TiB2p)→单相纳米TiB2p→单相纳米TiCp。铸态α-Al晶粒细化主要归因于纳米TiCp作为α-Al结晶的形核异质核心和纳米TiB2p阻碍α-Al枝晶生长;ii)揭示出纳米TiCp﹑纳米TiB2p和双相纳米(TiCp-TiB2p)显著细化β"析出相,细化效果由强到弱的顺序为:双相纳米(TiCp-TiB2p)→单相纳米TiB2p→单相纳米TiCp。β"析出相细化的主要原因是晶粒细化促进固溶原子的均匀扩散,导致β"析出相多处均匀析出,使β"析出相尺寸减小;iii)揭示出纳米TiCp﹑纳米TiB2p和双相纳米(TiCp-TiB2p)分别提高Al-Mg-Si合金板材的抗拉强度和屈服强度,20 MPa和13 MPa;34 MPa和29 MPa;49 MPa和59 MPa。强化效果由高到低的顺序为:双相纳米(TiCp-TiB2p)→单相纳米TiB2p→单相纳米TiCp。强化机制主要有如下三个方面:1β"析出相细化;2α-Al再结晶晶粒细化;3纳米TiCp和纳米TiB2p阻碍位错运动,促进位错增殖;2)揭示出纳米TiCp和纳米TiB2p在加速腐蚀、电化学腐蚀、浸泡腐蚀中对Al-Mg-Si基体合金冷轧板材的钝化效果、晶间腐蚀(IGC)和抗腐蚀性能的影响规律及机制:i)发现在加速腐蚀﹑电化学腐蚀和浸泡腐蚀条件下,抗腐蚀性能由高到低的顺序为:0.5 wt%TiCp/Al-Mg-Si复合材料冷轧板材→Al-Mg-Si基体合金冷轧板材→0.5 wt%TiB2p/Al-Mg-Si复合材料冷轧板材;ii)揭示出在3.5 wt%Na Cl水溶液中存在周期性腐蚀行为,IGC是影响腐蚀行为的主要因素。在第一周期存在两个腐蚀阶段。阶段I:首先形成Al2O3钝化膜,腐蚀现象开始,随后IGC导致腐蚀加重,直至Al2O3钝化膜脱落,达到腐蚀失重最大值;阶段II:又开始形成Al2O3钝化膜,腐蚀失重减轻。随着IGC发生,Al2O3钝化膜开裂、剥落,但同时有新的Al2O3钝化膜生成。待Al2O3钝化膜剥落速率大于生成速率时,阶段II结束,开始了另一个腐蚀周期;iii)揭示出晶界处第二相数量越多,IGC越严重;Al-Mg-Si合金冷轧板材添加纳米TiCp减少晶界处第二相数量,提高抗IGC能力。晶界处第二相数量由少到多的顺序依次为:0.5 wt%TiCp/Al-Mg-Si复合材料冷轧板材→Al-Mg-Si基体合金冷轧板材→0.5 wt%TiB2p/Al-Mg-Si复合材料冷轧板材;iv)揭示出Al2O3钝化膜致密性受如下两个方面因素影响。1是晶粒尺寸越小,越均匀,越易形成连续完好的Al2O3钝化膜;2是晶界处第二相数量越少,微电偶越少,IGC越轻微;3)揭示出纳米TiCp、双尺寸晶粒与双尺寸β″析出相层状分布构型的形成及对强度各向同性的作用机制:i)揭示出单一TiCp/Al-Mg-Si复合材料累积叠轧板材的RD和TD方向的屈服强度和抗拉强度分别比复合材料初始冷轧板材的RD和TD方向的强度提高50MPa,63 MPa和106 MPa,109 MPa。但其RD和TD方向上的屈服和抗拉强度的各向异性分别为56 MPa和46 MPa,均匀延伸率分别下降3.9%和3.1%;ii)揭示出与单一TiCp/Al-Mg-Si复合材料累积叠轧板材相比,3.0-TiCp/M复合叠轧板材的RD方向均匀延伸率从4.2%提高到7.4%;TD方向屈服强度、抗拉强度和均匀延伸率分别从380 MPa、431 MPa和5.0%提高到443 MPa、501MPa和6.4%。但其RD和TD方向的屈服强度和抗拉强度的各向异性分别为112 MPa和103 MPa;iii)揭示出复合叠轧板材的强塑性提高主要归因于:复合材料层细小的β″析出相、弥散分布的纳米TiCp和细小的动态再结晶晶粒对位错产生的交互耦合作用,提高了板材强塑性;iv)首次采用CARB工艺消除了3.0-TiCp/M复合叠轧板材的强度各向异性。CARBi板材的RD和TD方向上的屈服强度和抗拉强度差值分别为2 MPa和3 MPa;CARBii板材的RD和TD方向上的屈服强度和抗拉强度差值分别为2 MPa和4 MPa;v)揭示出纳米TiCp在板材旋转90°叠轧和界面剪切力作用下,在空间分散趋于弥散,均匀化;构建出纳米TiCp层状弥散分布,双尺寸晶粒和β″析出相均匀层状分布新构型。vi)揭示出采用CARB两种工艺获得强塑性各向同性的机制主要归因于:纳米TiCp层状弥散分布、双尺寸晶粒与β″析出相的均匀层状分布构型,使板材的组织与性能均一化。本研究为提高变形铝合金的强塑性、各向同性和耐腐蚀性能提供了新的途径,为开发出具有优异、各向同性室温力学性能及耐腐蚀的纳米颗粒增强铝基复合材料轧制板材提供了实验依据和技术及理论参考。
其他文献
在传统油气资源逐渐枯竭的当下,天然气水合物作为一种清洁高效的未来能源日益受到世界各国重视,以低温高压为形成条件的天然气水合物在自然界中主要赋存于陆域永久冻土带和海域深海沉积物中。海底天然气水合物分布广泛,然而已有的钻探结果显示海底天然气水合物无论是平面上还是垂向上均呈现出明显的不均匀分布特征,以“运”—流体运移条件和“聚”—沉积层储集条件为代表的水合物成藏要素控制着海底水合物的形成与富集成藏过程。
铀矿资源作为国家能源-战略型资源,是我国军工/军事、国防工业、能源开发及国民经济有序增长的重大需求之一。砂岩型铀矿是目前所有铀矿类型中最具开采潜力的铀矿床,表生铀元素伴随着岩石的剥蚀、水解及风化,铀元素迁移及富集成矿均需要较为特殊的盆地沉积条件及盆地构造背景,使得砂岩型铀矿在成矿过程呈现一定的空间选择性分布规律,在垂向空间分布上具有成层性、分带性等特征。因此,砂岩型铀矿垂向空间展布特点和分带特征对
多孔材料顾名思义,是一类具有一定数量和尺寸孔道结构的材料,其在自然界中就已广泛存在,例如木材,珊瑚礁,海绵,木炭等。随着工业的需要,越来越多具有独特性能的多孔材料被开发和制备出来,例如沸石分子筛,介孔氧化物,金属-有机骨架(MOFs,Metal-organic frameworks)材料,多孔有机框架材料(Porous organic frameworks,POFs)等。其中,沸石分子筛是由TO4
以二氧化硅为基质的发光复合材料具有生物相容性好、化学稳定性高、表面易于功能化等优点,在生物成像,化学传感、光电子器件制造、防伪技术等领域具有巨大的应用价值。然而,目前发光二氧化硅基复合材料存在着制备过程复杂、发光物质负载效率低、光稳定性差、发光量子产率低等问题。本论文基于原位合成策略,制备了一系列具有优良发光性质和光稳定性的二氧化硅基复合材料,研究其发光机制,并探索了这些材料在细胞成像、荧光防伪、
21世纪的一个重大挑战是开发新型轻质高强韧结构材料,以满足空天、建筑和交通等领域的应用。金属/陶瓷复合材料由于兼具金属的塑韧性和陶瓷的高刚度、高强度等优点是最理想的材料之一。然而,受材料、结构和工艺等多重因素影响,制备高性能复合材料需解决以下三方面问题:一是传统的金属基复合材料多以均匀复合为特征,不利于发挥组分之间的协同耦合响应机制;二是由于传统设计方法和制备工艺的约束,导致材料制造困难;三是缺乏
热活化延迟荧光(TADF)材料由于能够在不利用第八副族贵重金属(铱、铂等)的前提下实现理论上100%的内量子效率,所以被看作是第三代有机发光二极管(OLED)的核心材料。目前,基于TADF材料的电致发光器件在全光色范围内的最大外量子效率(EQE)都超过了25%,在蓝、绿两种光色下的EQE更是超过了30%,但还是有一些问题亟待解决。首先,深红光材料的发展还落后于蓝、绿光材料。其次,随着研究工作的深入
人类文明的发展离不开材料科学的进步。如今的人类社会正处于信息时代,材料科学得到了空前的发展。单晶硅材料的制备和加工技术的产生,促进了大规模集成电路的发展;半导体化合物的崛起,推动了微电子和光电子领域的进步;高温高强度结构材料的突破,打开了宇航工业的大门。可以看出,材料科学是高新技术发展的基础,是一个国家工业和科技实力的重要体现。在众多材料中,纳米材料作为一种具有独特物理、化学性质的材料,逐渐广泛地
活性铝合金块体材料以能量载体形式,可以在水解条件下呈现出多样化的释氢特性,被视为一种极具应用潜力的在线供氢材料。本文针对低熔点相活化富铝合金的产氢特性,考察Al含量高达90 wt%及以上的合金中成分设计对合金物相、微观结构、组分分布及热效应温度等若干可调性质的影响机制及其对水解释氢性能的作用规律,目标是开发出具有高能量转化率和平稳释氢速率特性的高能量密度铝合金块体制氢材料。(1)通过成分设计得到I
广视角、自发光、低功耗、快响应等优异的性能使得有机发光二极管(Organic light-emitting diodes,OLEDs)成为了未来显示技术中最具有竞争力的选择之一,其在商业领域的巨大应用潜力已经被渐渐激发。经过几十年的发展,各个发光颜色的OLEDs都已经取得了成功。开发高效OLEDs的最基本出发点是获得高的器件内量子效率(Internal quantum efficiency,IQE