【摘 要】
:
页岩气是一种清洁、高效的能源资源,乙烷作为页岩气中的第二大组分,其产量在页岩气革命后大幅增长,导致乙烷价格严重下跌。因此,实现乙烷向高附加值的化工原料(乙烯及合成气等)的高效转化是应对乙烷产量激增、价格走低的关键出路,具有重要的研究意义与经济价值。化学链技术借助氧载体等中间介质将单个化学反应在空间或时间上解耦为两个或多个反应,具有反应有序解耦、产物原位分离的优点。高性能的循环载体是化学链技术的关键
【基金项目】
:
国家自然科学基金“耦合化学链己烷氧化裂解和CO2还原过程的氧载体非均相反应机理和功能调谐机制(51906076)”和“纳米颗粒高温均相成核的速率测量和模型参数辨识(51920105009)”;
论文部分内容阅读
页岩气是一种清洁、高效的能源资源,乙烷作为页岩气中的第二大组分,其产量在页岩气革命后大幅增长,导致乙烷价格严重下跌。因此,实现乙烷向高附加值的化工原料(乙烯及合成气等)的高效转化是应对乙烷产量激增、价格走低的关键出路,具有重要的研究意义与经济价值。化学链技术借助氧载体等中间介质将单个化学反应在空间或时间上解耦为两个或多个反应,具有反应有序解耦、产物原位分离的优点。高性能的循环载体是化学链技术的关键,也是其由实验室研究推向工业化应用的瓶颈所在。本文从化学链乙烷高值化利用过程的高性能氧载体着手,主要开展了以下两方面工作:首先,采用溶胶凝胶法合成La Fe O3氧载体,在固定床上研究了反应温度和重时空速对氧载体在乙烷化学链干重整(CL-DRE)中性能的影响,以及氧载体的长周期循环性能。实验结果表明La Fe O3氧载体可实现乙烷向合成气的高效转化。被还原的La Fe O3氧载体可以被CO2氧化以实现其晶格氧的恢复,同时CO2被还原为CO,且氧载体颗粒表面的积碳可以通过CO2+C→2CO反应被有效清除。CO2还原的前期阶段CO2转化率接近100%。在20次循环实验中,La Fe O3氧载体的各项性能指标波动幅度较小,表明其具有较好的反应稳定性。对循环反应前后的氧载体进行了XRD、XPS和FESEM等表征分析,进一步证明了氧载体的晶相组成、表面元素分布及价态以及形貌结构均保持良好。然后,采用Ni Fe2O4作为氧载体,研究了反应温度、重时空速和氧化气氛(CO2vs.O2)对氧载体在乙烷化学链氧化脱氢(CL-ODH)中反应性能的影响。基于固定床的实验结果表明,在850℃、60000 L/(kg·h)以及CO2作为氧化剂的条件下,Ni Fe2O4氧载体可得到86.88%的乙烷转化率,同时乙烯选择性高达86.43%,而COx和CH4等副产物的选择性低至3%-5%,无积碳生成。相比O2,采用CO2再生的氧载体可保持几乎相同的乙烷转化率,但乙烯选择性要高出近7%(850℃,60000 L/(kg·h))。XRD分析结果显示O2可将氧载体完全恢复为Ni Fe2O4晶相,而CO2无法完全再生氧载体,发现部分Fe Ni3晶相。XPS结果表明两种气氛下氧化再生后的颗粒近表面Ni元素分布均有所降低。但值得注意的是,CO2气氛下再生颗粒的Ni元素比例更低,且Ni和Fe均向低化学价态转化;CO2再生的氧载体与新鲜氧载体的氧物种保持一致,而O2再生的氧载体颗粒晶格氧比例增大、表面缺陷氧及吸附氧比例减少。在20次循环实验中,乙烷转化率稳定在88%左右,乙烯选择性由85.23%降低至80.56%,总体反应性能较稳定,认为Ni Fe2O4可以作为乙烷化学链氧化脱氢过程理想的氧载体候选。
其他文献
高炉炼铁是钢铁工业的重要生产环节。由于工艺相对简单、产量大、劳动生产率高,因而高炉炼铁是现代炼铁的最主要方式,其产量约占世界生铁总产量的95%以上。高炉炼铁需要准确判断整个高炉运行态势,及时调整相关操作制度(如布料制度、热制度等)及工艺参数,使炉内煤气分布合理、热量充分利用、渣铁顺利排放,实现高炉生产的优质、高产、低耗和长寿运行。为了实现这一目标,就应对高炉运行状态进行实时监测和有效控制。然而高炉
计数组合学是离散数学的重要分支,其研究领域与群论、几何学、图论、拓扑学、运筹学等学科关系密切。计数组合学主要研究有限结构的计数问题,随着计算机科学的日益发展,组合数学的重要性日渐凸显。排列统计是计数组合学的重要组成部分,在D.Foata、R.P.Stanley、陈永川等数学家的推动下排列统计理论与树、对称函数、杨表、格路等诸多组合结构建立了联系。利用多种途径研究排列统计量的性质具有重要的理论价值。
如今烟雾仿真是当前自然环境仿真的重要组成部分,消除人工痕迹,在保留烟雾实时性的前提下增强仿真真实性已经成为了科研人员面临的主要问题。本文改变了以往基于动量的N-S流体运动模型,采用基于涡度的烟雾扩散模型求解方式,构建双精度烟雾粒子系统来提高烟雾仿真的实时性。其中低精度粒子系统主要研究了烟雾粒子的基本扩散规律,考虑到外力对于烟雾粒子的具体影响,描绘出烟雾粒子的基本运动轨迹,为高精度粒子系统提供相应的
激光织构化技术是近年来发展起来的表面处理技术,该技术能在材料表面制备具有微纳米结构的特殊形貌,是改善材料表面的摩擦磨损性能、润湿性能等表面性能的有效方法,对延长零部件的使用寿命,节约能源具有重要意义。目前,关于激光织构化的研究绝大部分集中在织构化工艺和性能的表征,而对织构化过程中的温度场分布、形貌和表面粗糙度之间的关联及耐磨性的影响规律等缺乏深入研究。对这些方面的研究,将有利于优化激光织构工艺,实
个性化推荐系统的出现为电子商务网站带来了更好的发展契机,与此同时,随着网络技术的快速发展,顾客和商家越来越追求较高的推荐质量。因此,推荐算法得到了广泛的研究。本文对概率矩阵分解算法进行了研究,分别从用户和商品两个方面结合SVD算法和聚类模型等方法对其进行改进,主要工作如下:1.提出了一种基于信任关系的概率矩阵分解推荐算法。首先,通过加入商品流行度和时间间隔权重因素对初始评分矩阵进行预处理。然后,基
随着工业的快速发展,大量染料废水的排放给环境和人类带来巨大的污染和伤害。光催化技术对于降解染料废水有很大的研究前景和应用价值。BiOBr具有独特层状结构使其成为非常有潜力的光催化剂。但是由于光生电子和空穴的复合,需要进一步提高光催化活性。本文以BiOBr作为核心光催化剂,通过不同的制备方法制备了 g-C3N4/BiOBr、WO3/BiOBr和BiON-5N/BiOBr三种复合光催化剂,并以罗丹明B
人类对能源的需求迅猛增加带来了能源短缺的潜在问题,同时由于化石能源的大量使用带来了空气污染和气候变暖等环境问题。CO2光催化还原技术通过对太阳能的资源化利用将温室气体转化为可利用的有机燃料,是一项可以缓解能源压力的同时减轻温室气体排放的可再生能源技术,该过程具有零污染、低成本、反应条件温和等优势。本文利用金属改性技术对Ti O2进行调控,并对CO2光催化还原特性和机理进行了详细分析和研究,以期对C
在能源获取与工业利用的相关活动中,低浓度可燃气体(主要包括CO、CH4和挥发性有机化合物)的排放威胁着人类健康和生活环境。催化燃烧是一种非常有潜力的可燃气体氧化脱除技术。高性能催化剂则是实现较低温度下污染物完全净化的关键点之一。火焰喷雾热解技术(FSP)被认为是一种合成纳米颗粒催化剂的先进方法,其所展现出的优良特性为制备负载型催化剂以及钙钛矿催化剂带来了新的机遇。对于负载型催化剂,活性组分在载体上
近年来,随着高层楼宇技术水平的飞速发展,人们对生活水平质量的追求也在不断的提升。二次供水质量在人们生活中扮演着举足轻重的角色,但供水系统在运行时对离心泵的调度选择仍有不当,致使离心泵系统运行的效率始终偏低,浪费电能,同时影响离心泵的使用寿命。故本文从能耗及寿命优化的角度着手,对整个系统运行能耗和寿命控制策略进行深入的研究,以达到低能耗高寿命的效果。首先,为了建立二次供水并联泵组系统的能耗模型,对供
通过生物质热解制备的生物油具有较大应用潜质,但其高分子量(>200 Da)与高沸点的重质组分易在进一步提质过程中受热聚合成焦,进而导致后续处理过程发生诸如反应器堵塞,催化剂积碳等运行问题。前期研究发现,不同温度与升温速率下生物质组分(纤维素、半纤维素、木质素)及组分间交互反应与生物质灰分中无机金属元素显著影响生物油产率及分子质量分布,从而影响生物油中重质组分生成,但其对重质组分生成特性的影响机理尚