论文部分内容阅读
动态交通分配是道路交通网络建模与分析的核心内容,基于实际采集多源感知交通数据,构建适应城市道路间断交通流特性、兼顾计算效率与准确性的大规模城市路网动态交通分配模型,对于有效提升城市道路交通智能化管控的鲁棒性水平,缓解城市道路交通拥堵具有重要现实意义。基于现实城市路网交通智能感知数据,既有动态交通分配模型研究存在车流OD估计严重依赖路径选择行为假设、交通流加载及传播描述能力不足、求解效率低等诸多问题,导致以动态交通分配模型为核心的智能交通管理技术(如主动式拥堵热点疏解)难以应用于大规模城市路网。面向我国城市道路智能化交通管控需要,本文提出了基于多源感知数据的城市大规模路网动态交通分配模型构建方法。研究主要包括多源数据环境下大数据驱动的动态交通需求模式(即OD模式)估计、网络交通流动态加载模型构建、动态交通分配建模与求解三个关键技术,具体的研究内容和结论总结如下。(1)针对当前城市大规模路网车流OD估计严重依赖路径选择行为假设问题,考虑卡口式电子警察采集的过车记录中存在大量轨迹数据,论文提出了一种多源数据环境下大数据驱动的动态OD模式估计方法,克服了既有方法未充分利用真实路径选择信息,OD模式估计结果难以反映现实路网交通需求分布的不足。首先,考虑到卡口式电子警察设备的空间覆盖率情况,从过车记录中提取的车辆轨迹通常是不完整的,提出了基于粒子滤波模型的轨迹重构方法。其次,基于重构的完整车辆轨迹,提出了一种以轨迹数据为主、断面交通流数据为辅的城市路网动态OD模式估计方法。在此基础上,考虑到轨迹数据空间分布异质性特点,基于空间统计学方法量化分析了轨迹数据异质性对OD模式估计的影响。最后,基于空间统计分析揭示的影响规律,提出了一种OD模式调优方法。基于提出的方法对昆山市中心城区路网的工作日早晚高峰和中午平峰的动态OD模式进行了估计。结果表明,估计的交通出行产生/吸引量能够准确反映路网交通需求的动态变化与空间分布,OD模式估计结果具有较高的精度,各时段的MAPE值均维持在20%以内;模型估计精度随着轨迹数据平均采样率的降低而减小,最小可接受采样率为60%;空间统计分析表明,出行产生/吸引变化量的局部空间自相关性几乎不随轨迹采样率而变化,受轨迹空间分布异质性影响较大的热点交通小区数量和位置分布与测试区域位置具有较强的相关性;OD模式调优方法通过精准调整与热点交通小区相关的需求估计值,即可实现了OD模式估计精度的有效提升。(2)针对既有动态网络加载模型对信号控制影响下的间断交通流描述能力不足问题,论文提出了一种基于改进元胞传输模型的城市路网交通流动态加载模型。首先,考虑传统基于路径的元胞传输模型视交叉口为节点、无法模拟信号控制对路口通行能力影响等缺陷,通过构建转向元胞流量传递方程,提出了一种适用于城市道路的改进元胞传输模型。其次,针对传统人工划分元胞的方法费时费力问题,提出了一种基于路网拓扑的元胞自动划分方法,实现了大规模路网的元胞模型快速搭建。最后,以改进的元胞传输模型为核心,研究构建了以路径流为最小加载单元、基于中观仿真的城市路网交通流动态加载模型。对长江路干线及其周边道路构成的局部路网上进行了交通流动态加载仿真测试。结果表明,在路径分配确定的前提下,提出的模型能够将给定的动态交通需求合理的加载至路网,并准确模拟交通流的动态传播演变以及交通拥堵的“形成-扩散-消散”过程;改进的元胞传输模型通过转向元胞通行能力约束近似模拟了信号控制对交叉口进口道及内部车流运行的影响,获得的转向流量仿真值较为准确;模型以进口道延误(进口道上的元胞行程时间)来替代信号控制延误,能够为DTA建模提供准确的动态路径阻抗,干线行程时间MAPE值处于10%左右。(3)针对既有动态交通分配模型在现实大规模路网应用场景中存在的求解复杂耗时问题,研究构建了一种基于空间域分解的大规模路网动态交通分配模型,设计了并行仿真求解方法,初步实现了分配准确性与计算效率的协调兼顾。首先,考虑智能化交通管控对模拟真实路网交通流状态的需求,构建了基于动态用户均衡分配准则的交通分配模型,提出了基于相继平均法的连续多时段动态交通分配仿真求解方法。其次,考虑到模型求解复杂度与经过元胞的路径数量成正比,定义了一个新的变量—元胞路径数,以路段上的元胞路径数作为路段负载。为了确保并行计算时各进程具有相近的工作负载、减少进程等待时间,提出了以负载平衡为目标、路段负载为权重的基于广度优先搜索的路网空间域分解方法;在此基础上,提出了一种基于并行计算的仿真求解方法。以早晚高峰和午间平峰共20个15分钟时间间隔的动态OD作为模型输入,对昆山市中心城区路网进行了动态交通分配测试。结果表明,本文方法具有较好的收敛性,各测试时段模型经过13~19次迭代可达到收敛,相对间隙指标(Relative Gap,RG)的最佳阈值为0.4%,在同等迭代次数下平峰时段模型更易收敛于较低的RG值。被选路径的行程时间变化范围较小,最短路径的分配流量远高于非最短路,说明路径分配结果较好的满足动态用户均衡准则;断面流量和速度的空间分布与真实交通状况较为符合,路径行程时间的仿真值与观测值保持了基本一致的变化趋势,二者误差在8分钟以内。行程时间仿真值与观测值区间下限更为接近,说明现实路网交通流分布并非处于理想动态用户均衡状态。并行仿真求解方法显著提升了模型的求解速度,进程数为14时达到最优加速比(6.78),计算时耗缩短至10分钟以内。本文构建的DTA模型初步实现了分配精度与计算效率的兼顾,基本满足智能交通管控应用的实时性要求。