论文部分内容阅读
化石能源(煤、石油、天然气等)有限的储量及不可再生性,已无法满足人类的能源需求。面对日益严峻的能源危机和环境污染的双重问题,寻求一种新的可再生绿色能源迫在眉睫。在众多的新能源中氢能释放能量高达142 MJ Kg-1,其能量密度大,燃烧后的产物为水,安全环保,是理想能量的优质载体,但氢气的可逆存储是限制氢能大规模应用的重要因素。固态储氢技术被认为是一种极具潜力的储氢技术。轻金属硼氢化物作为固态储氢材料的一种,因具有高储氢容量,备受关注。其中,Ca(BH4)2具有11.4wt%理论储氢容量,理论反应焓变只有40.6kJ/molH2,是一种极具潜力的高容量储氢材料,近年被国内外储氢材料研究机构作为研究重点,但其实际反应的热力学、动力学以及可逆性等方面仍须进一步改善,就目前的放氢热力学、动力学以及可逆性还无法满足其实用化。本文以Ca(BH4)2研究目标,通过Mg(AlH4)2与Ca(BH4)2复合以及采用多孔CaB2H7+0.1TiO2与MgH2复合的方法,提高体系的储氢性能,并揭示了促使性能提高的机理。通过球磨不同比例的Ca(BH4)2和Mg(AlH4)2,制备了Ca(BH4)2-xMg(AlH4)2复合材料,并研究不同Mg(AlH4)2添加量对Ca(BH4)2储氢性能的影响。结合XRD射线、红外光谱以及DSC热重分析,揭示了Mg(AlH4)2-Ca(BH4)2体系的分解机制及其性能改善的机理。结果表明,较单一Ca(BH4)2,复合体系的吸放氢性能得到明显提高。研究发现,Mg(AlH4)2分解后产生MgH2与Al产生的Mg-Al固溶体对Ca(BH4)2放氢起到重要作用。形成的MgH2在一定程度上保证了体系具有较高的容量和改善其可逆性。通过在多孔结构的CaB2H7+0.1TiO2基础上,球磨引入MgH2后制备出CaB2H7+0.1TiO2+2MgH2复合体系,并研究其的吸放氢性能。研究发现,CaB2H7+ 0.1TiO2+2MgH2复合体系相对Ca(BH4)2-2MgH2体系其峰值放氢温度降低了约70℃,且其放氢动力学性能得到提高。相比与CaB2H7+0.1TiO2体系,添加MgH2后,复合体系的可逆性提到改善,可逆吸氢量由原先的3.9wt%提高到6.1 wt%。结果分析,除了Ti02给体系热力学动力学带来改善的以外,由XRD图谱得知复合体系升温至320℃保温1小时的过程中产生的新相MgCaH3.72是促进体系可逆性提高的重要因素,该相高度可逆,作为中间产物出现,高温区又消失。