【摘 要】
:
非凸优化问题即具有非凸目标函数或非凸约束集的优化问题。机器学习、压缩感知、数据挖掘等领域中许多重要的实际问题均可建模为非凸优化问题。然而,凸性的缺失给此类问题的算法构造及收敛性分析带来了挑战。近年来,非凸优化问题的算法探究吸引了学者们的广泛关注。神经动力学优化算法因其具有大规模并行计算的能力,可以更好地适应实时求解的需求。基于此,本文主要研究四类不同的非凸优化问题,并针对性地提出可以高效求解的神经
论文部分内容阅读
非凸优化问题即具有非凸目标函数或非凸约束集的优化问题。机器学习、压缩感知、数据挖掘等领域中许多重要的实际问题均可建模为非凸优化问题。然而,凸性的缺失给此类问题的算法构造及收敛性分析带来了挑战。近年来,非凸优化问题的算法探究吸引了学者们的广泛关注。神经动力学优化算法因其具有大规模并行计算的能力,可以更好地适应实时求解的需求。基于此,本文主要研究四类不同的非凸优化问题,并针对性地提出可以高效求解的神经动力学优化算法,具体研究内容如下。1.针对一类带有仿射等式及凸不等式约束的非光滑非凸优化问题,提出一种具有辅助函数的非自治神经网络。引入一个基于不等式约束域结构设计的辅助函数,借助于其良好性质,消除了许多文献中要求优化问题的不等式约束域有界及目标函数在等式约束域下方有界的限制。此外,证明了所提出的神经网络从任意初始点出发的状态解收敛于该非凸优化问题的稳定点集。特别地,当目标函数伪凸时,该神经网络的状态解全局收敛到相应的伪凸优化问题的一个最优解。2.针对一类带有非凸不等式约束的非光滑非凸优化问题,提出一种基于光滑化技术的神经网络。通过对目标函数进行光滑化处理,避免了已有文献中需要目标函数是光滑或非光滑正则的弊端。此外,为了克服约束函数非凸性带来的分析困难,引入了一个硬限幅函数。基于此,证明了该神经网络从可行域出发的状态解的任意聚点为所考虑的非凸优化问题的稳定点。当目标函数和不等式约束函数为一些广义凸函数时,证明了该神经网络的状态解收敛到对应的广义凸优化问题的一个最优解。与一些相关的神经网络相比,该模型不包含需要预先估计的惩罚参数,且不依赖于一些额外的假设条件,例如,目标函数强制;Slater条件成立等。3.针对一类约束复变量非光滑伪凸优化问题,提出一种复值神经网络。复数域结构的复杂性为复变量优化问题的求解带来了很多困难。目前,现有大多数的算法只局限于复变量光滑凸优化问题。本文基于CR微积分及非光滑理论,给出了有关复变量实值函数的非光滑分析。进而证明了所提出的复值神经网络从任意初始点出发的状态解均收敛到该优化问题的一个最优解。与已有相关复值神经网络相比,该神经网络适用性更为广泛且计算复杂度更低。4.针对一类约束分布式非凸优化问题,提出一种基于偏p-次幂重构的神经网络。首先,为了消除所考虑的非凸优化问题的对偶间隙,考虑对其不等式约束作用p-次幂变换。其次,基于该变换后的等价问题,给出一种分布式神经网络。证明了该神经网络的状态解是输出一致的,且局部收敛到所考虑的约束分布式非凸优化问题的一个严格局部最优解。此外,值得指出的是,该算法不需要智能体间交换各自的目标函数或约束函数等隐私信息,有助于智能体间的隐私保护。
其他文献
随着航空、航天以及核电等领域的快速发展,对大型航天器、飞机以及核设施等设备的日常维护维修工作需求日益突出。但由于狭窄的工作空间和极高低温、高辐射等恶劣环境,该项工作开展显得异常困难。鉴于绳驱连续型机器人具有体型纤细、臂型连续、机电分离等特点以及超强的灵巧运动和环境适应能力,在此类极限环境下应用具有卓越的潜力。然而,要将绳驱连续型机器人在上述领域中进行实际应用,还需要解决其目前存在的结构刚度低、模型
窄间隙焊接技术采用深窄坡口形式代替传统大角度坡口,填充面积仅为常规方法的1/4-1/2,极大提高焊缝填充效率并改善焊后组织性能。其中,窄间隙激光焊接具有热源能量集中、微角度坡口形式、高速焊接等优势,在厚壁构件焊接领域具有广泛的应用前景。针对现有窄间隙激光焊接方法存在的焊缝侧壁熔合不良、气孔、组织性能均匀性差等问题,从焊接熔池调控技术出发,提出了电磁辅助窄间隙激光焊接新技术,利用恒定磁场和交变电流,
高分辨率逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像技术因具备生成非合作运动目标二维高分辨率图像的能力而被广泛应用于军事和民用领域。但是二维ISAR成像存在一些固有缺陷。首先,ISAR图像无法提供目标除距离和多普勒维以外的第三维信息。其次,ISAR图像的方位维尺寸仅反映了散射点的多普勒分布,因此无法从ISAR图像中直观获取目标的实际横向尺寸。此外
随着对地遥感任务越来越复杂,航天器在一个轨道周期需要对多个目标进行凝视观测。同时,航天器的机动能力不断提升,从非敏捷航天器发展为敏捷航天器,具备了三轴姿态快速机动能力。如何充分利用航天器的姿态机动能力,实现对更多目标的观测,对于提升对地观测效率至关重要,是未来遥感卫星发展的重要方向。另一方面,航天器携带燃料有限,提高航天器的姿态机动效率,以较低的能量消耗完成姿态转移,是延长航天器在轨运行寿命的重要
相较于传统由旋转电机和机械传动部件构成的直线运动装置,永磁直线同步电机(Permanent Magnet Linear Synchronous Motor,PMLSM)更易获得高推力、高速度、高动态响应和高精度等性能,在精密直线运动场合具有广泛的应用前景。然而由于初级铁芯纵向开断,PMLSM存在特有的纵向端部效应。纵向端部效应一方面与齿槽效应耦合作用,导致电机气隙磁场产生较大畸变,另一方面导致电机
近年来,助推-滑翔飞行器研究逐渐成熟,世界航天强国开展了大量相关试验,部分国家的助推-滑翔飞行器已进入战斗值班状态。不同于运动形式固定的弹道式目标,助推-滑翔飞行器具有飞行阶段多、机动能力强、机动形式多变的特点,其强突防能力为现有导弹防御系统造成极大挑战,发展助推-滑翔飞行器拦截相关技术刻不容缓,对保护我国国家安全及人民生命财产安全具有重要的战略意义。助推-滑翔飞行器轨迹跟踪技术为整个拦截过程提供
总有机卤(TOX)是水中所有卤代有机物的总和,因其可方便评价水中消毒副产物(DBPs)的含量,已成为水中污染物处理和监控的一个重要指标。但现有TOX分析方法主要通过活性炭吸附分离有机卤,不同活性炭吸附能力存在差别,且因吸附分离过程存在相变而对有机卤影响较大,显著影响了分析的稳定性和准确性,限制了TOX分析方法的常规应用。基于此,本研究提出建立一种电渗析及紫外联用的预处理技术,同离子色谱配合使用可准
染料敏化太阳电池(DSSC),是一种潜在的、低成本光伏技术,可将太阳光转换为洁净的电能。DSSC所具有的调色板和透明度等优质特性,能同步提供日光与电能,可被广泛运用于建筑集成光伏(BIPV)。然而,基于钴基电解质的高效DSSC的稳定性限制了DSSC的大规模生产应用。光敏染料作为DSSC器件的核心组成部分,控制器件的光吸收和界面电荷复合,对器件的稳定性起着决定性作用。围绕这一主题,本文将从多角度就基
金属镁具有体积能量密度高、沉积过程无枝晶、成本低廉等优点,以金属镁为负极的可充镁基电池有望成为新一代廉价高效储能电池体系。但二价镁离子的离子半径较小,具有较高的极化强度,导致镁离子在电极材料内表现出迟缓的电化学反应动力学,限制了镁离子电池的发展。镁锂混合离子电池是以储锂材料为正极,镁金属为负极,镁锂双盐混合溶液为电解液的新型电池体系。该电池体系具备镁基电池优势的同时,解决了储镁材料动力学迟缓的问题
近年来,锌离子电池以其成本低、安全性高、生态友好等优点在储能领域展现出了巨大的发展潜力。在众多电极材料中,钒基材料,尤其是钒氧化物,具有开放式的框架结构,可容纳大量的Zn2+离子进行能量存储。虽然二价Zn2+可通过多电子转移反应提供较高的能量密度和比容量,但Zn2+离子电荷密度高、离子半径较大,会与主体材料产生强静电引力,加速主体材料晶格结构的弯曲振动,同时引起电极材料严重的晶格变形,导致主体材料