超长有机磷光碳点的合成、性能和应用

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:ayelili
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
碳点是近年来备受人们关注的新型发光材料。由于其具有毒性低、生物相容性好、材料来源广、成本低、绿色环保、发光颜色可调等优势而被广泛的用于医学成像、发光二极管、数据加密与防伪等领域。然而,碳点的光学研究主要集中在短寿命的荧光发射,对长寿命的磷光性质研究仍然处于初期。在材料体系方面,磷光碳点的合成前体种类较少,后期纯化处理复杂,磷光发射过多的依赖主体基质的参与。在发光性质方面,磷光发射主要集中在绿光区和黄光区,发射颜色单一。在机理研究方面,由于碳点的结构难以解析,磷光发射的机理解释受限于定性的结构表征和相关的光物理表征。因此,设计合成具有颜色可调谐的新型室温磷光碳点已经成为近年来的研究热点。本论文主要分为以下两个部分:第一部分是根据室温磷光碳点的发展近况,我们选用缩二脲和磷酸作为前驱物,通过水热反应法合成了一种全色室温磷光碳点(FP-CDs),并通过透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、X-射线光电子能谱(XPS)、紫外-可见光吸收光谱(UV-vis)、光致发光光谱(PL)、时间分辨发射光谱等手段对碳点的结构、形貌、光吸收特性和发光特性进行了详细的表征和分析。实验结果表明:FP-CDs颗粒分散均匀,平均尺寸为2.4 nm,内部具有晶格结构。其表面含有大量的官能团,其中C=O基团的含量远高于目前已报道的碳点。FP-CDs具有激发依赖的磷光发射,随着激发波长从310 nm逐渐增加到440 nm,磷光发射峰从484 nm逐渐红移到633 nm,发光颜色从蓝色变到红色。磷光发射具有超长寿命,最长可达1222.39 ms。第二部分是通过对比实验和拓展实验系统研究了FP-CDs的发光机理,提出了一种多彩室温磷光碳点的设计理念,并拓展了多彩室温磷光碳点的潜在应用。研究发现:FP-CDs磷光发射来源于表面态,而非量子尺寸效应;激发依赖磷光行为来源于碳点表面形成的羰基簇。高含量的羰基在碳点表面聚集,改变了发射中心的共轭程度,进而形成具有不同能隙结构的发射中心。通过拓展实验,我们进一步证明了含有羰基官能团的化合物有利于合成多彩室温磷光碳点。最后,我们探索了多彩室温磷光碳点在光学检测、加密、防伪和多色显示的潜在应用。
其他文献
本文为日本NHK(Nippon Housou Kyoukai)新闻播报口译实践报告,内容为2019年下半年对日本带来严重影响的19号台风相关播报,因其持续时间长、影响范围广,在相当长一段时间里都是新闻播报的主要内容。本次的口译实践选取了2019年10月11日至2019年10月17日为期一周的相关语音播报,播报总时长约为一小时,口译任务的原文16676字,译文12170字。NHK,全名为“日本放送协
空气污染已成为影响公众生活质量和地区经济发展的重要不利因素,降低空气污染,打赢空气污染治理保卫战是当前世界各国的共同目标。空气污染不仅危害公众的健康、减少寿命,而且对人们的心理情绪、日常行为方式、外出旅行以及工作效率等诸多方面产生负面效应,降低了城市的社会经济活力。旅游业作为我国第三产业经济发展的重要部分,也同样面临着空气污染等多方面的挑战。随着21世纪网络技术的蓬勃发展,丰富且客观的海量在线旅游
在超高压条件下,物质会产生新的特性,为了追求和研究这些特性,促进了超高压技术的发展。在超高压试验研究中,模具作为重要组成元件,需要能够承受工作环境下的巨大压力。钢丝缠绕预应力模具通过将高强度钢丝缠绕在压缸上对压缸施加预紧载荷,使压缸产生反向预应力,可以有效增加模具的承载能力。1.根据钢丝缠绕预应力模具的特点,本文设计了一种钢丝缠绕装置,对各个机构的功能特点进行了介绍分析并对各个机构作出结构设计。概
随着社会进入知识爆炸时代,知识的更新以及技术的淘汰与发展之快已经超过了以往任何时代。为适应不断发展的社会环境,教师的教育理念和教学方法都需要与时俱进,这其中,针对性地教会学生如何学习显得极为重要。中职学生学习的积极性和主动性普遍较差,且缺乏合适的学习方法,对此,教师需要传输给学生自主学习的方法,培养其课堂中的主体参与意识,促进其由被动学习向主动学习的转化。学习方式的改变可能在两个方面对中职学生产生
党的十九大报告指出,要“坚定实施科教兴国战略”,并指出要“培养造就一大批具有国际水平的战略科技人才、科技领军人才、青年科技人才和高水平创新团队”。因此培养一支高素质的体育教师队伍,势必成为一项重要的工作。习近平总书记在2014年教师节前夕视察北京师范大学的讲话中谈到了“新四有教师”,即有理想信念,有道德情操,有扎实知识,有仁爱之心。为新时代优秀教师的培养指明了新的方向,在此形势下,研究优秀中小学体
随着对矿产资源的开采,回采深度逐渐向深部发展,巷道围岩控制愈加困难,岩体应力水平急剧增加导致巷道围岩大范围破坏、持续变形严重影响巷道稳定性,特别是本文所研究的潘二矿11123工作面底板下方底抽巷,在工作面进行开采前,底抽巷已处于支护稳定状态,11123工作面开采的扰动作用致使围岩应力重分布,应力向底板深部传递,造成底板不同程度的破坏,会造成深部岩体的强扰动,极易影响巷道稳定性。因此,深入研究111
作为中国分布广泛的生态系统,喀斯特生态系统在过去50年中因快速砍伐森林和精耕细作而迅速恶化。在“绿色换粮”项目下,为了恢复土壤功能和生态系统服务而放弃了一些受干扰的农田,导致了不同的植被恢复阶段(原生林、次生林、弃耕和耕地)。喀斯特土壤中氮普遍缺乏,但在后农业演替期间通过调节重氮营养群落特性以及固氮酶的固氮能力可有效改善土壤环境特性,从而为“新的”氮输入陆地生态系统做出重要贡献。为探究固氮菌群与固
H.264/AVC及H.265/HEVC视频编解码标准自发布后取得了巨大成功,为了提高对于更高分辨率、更高位深的视频编解码效果,新一代编解码标准VVC正在制定中。新标准以上一代标准H.265/HEVC为基础,加入了一些新的技术,以期在编码相同质量的图像情况下,节省一半的码率。本文针对新一代视频编解码标准VVC进行研究,着重研究了新标准的编码性能及复杂度,并就其中占编码复杂度较高的四叉树加多元树划分
随着我国经济快速发展,人们对石油天然气的需求日益提高,进而对油气田现场能源开采效率提出了更高要求。由于石油开采设备频繁作业井下连续油管连接处存在老化、锈蚀等问题,以及修井作业过程中时有出现油管卡死现象,极大的影响了修井作业效率。本文通过对国内外现有的油管内切割设备的优缺点进行剖析,并结合国内修井作业设备的基本作业流程,研发一种与现有带压作业机有效融合的密闭切断装置。参考手动油管外切割工具作业方式,
互联网技术快速发展带动了网络信息的爆发增长,如何从大量的无结构信息中快速、准确的获得用户所需信息是当前急需解决的问题,因此信息抽取技术变的越来越重要,信息抽取技术包括命名实体识别、实体关系抽取等子任务,其能够作为自然语言处理问题中的许多任务的基础(如构建知识图谱和本体知识库、信息检索、智能问答系统)。实体关系抽取从基于规则的实体抽取方法到机器学习的实体关系抽取方法。基于规则实体关系抽取需要大量的领