稀土改性竹纤维增强树脂基摩擦材料的性能及机理研究

来源 :福州大学 | 被引量 : 0次 | 上传用户:carpplolo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
天然竹纤维具有可生物降解、可再生、密度小、强度高等特点,其增强的新型树脂基摩擦材料是近年来研究的热点。然而,天然竹纤维与树脂间界面粘结性差,且竹纤维耐热性不佳,限制了其在高性能树脂基摩擦材料中的应用。近年来人们逐渐意识到铜对人类和环境的危害,寻求摩擦材料中铜的替代材料成为开发无铜摩擦材料的关键。本论文采用稀土氯化镧溶液(LCS)改性竹纤维,改善其与树脂基体间界面粘结性能,同时提高其耐热性,从而有效提高其增强的树脂基摩擦材料的力学与摩擦学性能;采用稀土氧化物成功替代摩擦材料中的铜,所研制的摩擦材料具有极佳的高温摩擦学性能。采用LCS改性竹纤维,结果表明LCS改性可有效改善竹纤维与树脂间的界面粘结性能,同时还可提高竹纤维的耐热性;与碱处理相比,LCS改性更能有效提高摩擦材料的力学与摩擦学性能。摩擦材料中加入适量稀土La2O3可有效提高摩擦材料的力学与摩擦学性能。正交试验最优配方为:LCS改性竹纤维7%、陶瓷纤维10%、酚醛树脂14%、氧化镧14%、氧化铝19%、重晶石28%、橡胶粉5%,石墨3%。与国内外优质制动材料相比,所研制的最优配方在各温度下的摩擦系数均高于国产(Honda)和进口(BMW)试样,而磨损性能则与对比样相当。最优配方经Chase摩擦学性能测试,低温摩擦系数为0.563,高温摩擦系数可达0.580,具有极佳的抗热衰退和恢复性能,摩擦系数评级为HH,可用于赛车、飞机等高性能制动摩擦材料。通过纳米压痕技术表征竹纤维与树脂间的界面粘结性能,对改性前后的竹纤维表面进行傅立叶变换红外光谱(FTIS)和X射线光电子能谱(XPS)分析,结果表明LCS改性可有效降低竹纤维表面羟基的浓度,La3+可与纤维素葡萄糖基环C2上羟基中的O进行配位键合,同时La3+还可与酚醛树脂分子链上羟基中的O形成配位键合,形成具有稳定结构的稀土配合物,使竹纤维和树脂通过稀土元素化学键合在一起,有效提高竹纤维与树脂基体间的界面粘结性能。采用扫描电子显微镜(SEM)、能谱分析(EDS)和三维表面形貌仪对试样磨损表面进行分析,结果表明与Cu相比,摩擦材料中加入La2O3更有利于摩擦材料表面形成连续和均匀的摩擦膜和转移膜,降低摩擦过程中试样表面的粗糙度,起到稳定摩擦系数的作用。采用X射线衍射技术(XRD)对试样磨损表面进行物相分析,结果表明在摩擦磨损过程中,La2O3可与Al2O3反应生成La Al O3,Al2O3与Ba SO4反应生成Ba18Al12O36和Al2(SO4)3,使原来相互堆积的填料通过化学键结合在一起形成新的物相,有效提高摩擦材料的高温摩擦学性能。
其他文献
全球环境变化特别是气候变暖与氮沉降导致植物入侵的频度与强度日益加剧,从而给区域乃至全球生态安全与环境健康造成严重威胁。因此,关于全球环境变化与植物入侵之间的关系研究已成为当前全球环境生态领域研究的重大科学问题之一。但是,目前的研究大多聚焦于单一因子、单一梯度或单一物种特征等方面的解析,因此很难获得系统性和全面性的结论,特别是在全球变暖及氮沉降的交互作用下入侵植物入成功侵的驱动机理尚未充分阐释。本研
高性能计算在各领域中的应用发挥了巨大的作用,已然成为衡量一个国家的综合国力和科技发展水平的重要标志.随着高性能计算应用的深入和规模的扩大,人们对高性能计算系统的可靠性提出了更高的要求.而随着系统中处理器数量不断增大,系统出现故障的概率也随之增加.Esfahanian称系统为容错的,如果在超大规模多处理器系统发生故障时仍具备功能.系统是t-可诊断的,如果系统中故障处理器数目不超过t且不经替换可一次识
由于日益严重的水体富营养化和全球气候变化,人类和动物暴露于蓝藻水华产生的蓝藻毒素(cyanotoxins)已成为一个日益严重的全球性问题。在蓝藻毒素中,微囊藻毒素(microcystins,MCs)是一类分布广、毒性大的环状七肽毒素,其具有肝毒性和促肿瘤活性,是最常见的,也是最危险的蓝藻毒素之一,这些蓝藻毒素是有效的肿瘤促进剂(IARC 2B类致癌物)。有流行病学研究表明,MCs是原发性肝癌(PL
现代社会对能源的需求日益增长,促进了锂离子电池的大规模生产和应用。随着电动汽车的蓬勃发展,大力开发和研究具有更高功率、更高能量、更高安全性的锂离子电池已成为当前的研究热点。作为最具潜力的下一代高性能锂离子电池负极材料,锡(Sn)基材料和过渡金属氧化物材料由于具有成本低、理论容量高、环境友好等优点而引起了人们的广泛关注。但同时它们也存在体积膨胀严重、导电性能差等不足,造成循环寿命短、倍率性能差,阻碍
突破大型联合收割机等高端农机装备的研发技术瓶颈,实现农机产品的有效供给是我国农机行业发展面对的重大课题。传统设计方法存在研发周期长、效率低、缺乏系统化和结构化知识利用体系,无法实现设计与知识的有效融合,难以满足定制化、多样化的产品设计需求。另外现有仿真软件难以描述联合收割机脱粒装置与作物间相互作用过程和确定有效边界条件,使得仿真与实际结果很难吻合。针对上述问题本文对脱粒装置智能设计方法和水稻脱粒的
第一部分SSRP1在胃癌及细胞系中的表达水平及与临床特征相关性的分析目的:检测胃癌及癌旁临床标本以及胃癌细胞系、正常胃黏膜细胞系中SSRP1的表达情况,并探究SSRP1的表达与临床和病理的相关性。方法:1、从NCBI的GEO dataset数据库中搜索并下载公共数据集(数据集需包含胃癌和癌旁的mRNA基因表达水平),分析SSRP1的mRNA在胃癌和癌旁组织中的表达情况;2、在我院病理科收集胃癌患者
肝再生是肝组织丢失或损伤后的组织生长过程,是一种代偿性增生而非真正的再生,主要依赖于肝细胞的增殖。由于许多肝病的治疗策略如肝肿瘤切除和肝移植等均依赖于肝脏的再生能力,因此对于肝再生的研究具有重要的临床意义。IL-6和HGF等多种细胞因子和生长因子构成复杂的网络参与肝细胞周期的调控以确保肝再生的顺利进行。最近的研究表明miRNA在肝再生中发挥重要作用,如miR-21和miR-221。虽然各种细胞因子
锂离子电池作为现阶段应用最广泛的移动电子设备的能量来源,已经逐渐难以满足人们对高比能量电池的需求。在众多新型电池体系中,锂硫电池以其高能量密度的特点受到了广泛关注。传统的锂离子电池的嵌入脱出机理使得锂离子只能进入到正负极材料的固定位置,这一机理大大限制了其能量密度。在锂硫电池中,正极硫的转化反应机理和金属锂负极的剥离沉积机理使得正负极材料分别具有高达1675和3860m A h g-1的理论比容量
当前我国乡村住房统一建设中普遍存在村民参与不够、工业化程度不高、设计均质而单调等“重复性”问题,而传统乡村住房自发建设中由村民主导建设、生产生活生态一体、布局灵活多变等“差异性”特点却十分普遍。针对以上“重复性与差异性”矛盾,构建了一套乡村住宅规模化定制设计系统。该系统兼顾了乡土文化、居住需求、供给生产,耦合了乡村住区规划布局生成设计规则与乡村住宅个性定制生成设计规则,为“体小、量大、异质、低价”
磁纳米热疗技术是近年发展起来并受到广泛关注的一项肿瘤热疗技术。该技术主要利用磁纳米粒子(MNPs)在交变磁场作用下通过不同机制产热,从而实现对肿瘤组织内癌细胞进行局部加热并最终使其凋亡的一种有效治疗手段。尽管肿瘤磁纳米热疗技术具有副作用小以及治疗深度高等显著的优点,但也仍然存在许多亟需解决的关键问题。本文在研究了磁纳米热疗分析理论及其关键技术的基础上,结合磁热疗多物理场耦合方法和磁热疗关键影响因素