激光扫描测量系统光电信号延时特性及补偿方法研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:hyz3059611
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
激光扫描测量系统是一种新型光学大尺寸测量系统,凭借其可拓展的分布式网络测量模式、高精度多任务并行测量等优势,已经广泛应用于飞机、船舶等大型装备制造领域。测量系统以旋转激光平面作为媒介,结合时空转换原理实现角度交会定位,其中光电信号时域信息的精确性是影响测量精度的重要因素。测量系统中同步光信号标志着发射站的转台单周旋转至零位起点,提供扫描光旋转的基准时刻。信号处理电路根据同步光与扫描光信号的时间间隔,计算获得扫描光的旋转角度。但是同步光和扫描光工作时不可避免的延时特性会引入测角误差,进而会影响最终的坐标测量精度。论文从激光扫描测量系统的基本测量原理出发,分析了光电信号延时引入的系统测角误差。针对光电信号的延时问题建立了光电信号延时的数学模型,并在硬件电路和应用算法上对光电信号的延时进行了补偿方案研究。论文的主要内容如下:1.研究了激光扫描测量系统的基本测量模型,分析了扫描光、同步光激光器和光电探测器的工作原理与主要技术参数;研究了光电信号延时引入的测角误差以及修正延时后的坐标解算模型,并设计了一种基于转台正、反转测量目标的延时评价方法。2.通过定量分析激光发射与接收电路中主要器件的延时属性,建立了光电信号的电路延时模型;研究了信号延时的控制方案,利用可编程逻辑器件(CPLD)设计了延时电路;在此基础上研究了电路延时的补偿算法,并设计了同步光触发信号线路布局的优化方案。3.根据发射站和接收器之间探测距离的变化,仿真分析了光电信号飞行延时对坐标测量精度的影响,进而对测量过程中的坐标解算、发射站内外参数标定等环节给出了补偿方案。4.设计实验分析了光电信号延时对测角精度及坐标测量精度的影响,搭建实验平台对研究的电路延时补偿算法和飞行延时坐标补偿算法的补偿效果进行了实验验证。
其他文献
近年来,多种高性能的新型细丝大量涌现,其在现实生活中的使用范围逐渐扩大。在细丝的工业化生产制造中,如何进行自动化、信息化、并行化的细丝直径检测成为各大细丝制造厂商亟待解决的问题。因此,本文针对现有细丝直径检测方法的优缺点,在保证精度的前提下,以提高细丝直径测量频率为目的,提出了一种阵列细丝直径实时检测系统。本系统有效降低了数据传输量,缩短了细丝直径的解算时间,提高了细丝直径的检测频率,满足了工业化
学位
在光学器件的设计和加工领域,常常需要对器件参数进行精确的标定和测量,其中对光学器件平面夹角测量技术的研究一直是角度测量领域的研究热点。传统的比较式测角仪依赖标准角度块进行辅助测量,测量范围小,精度低。因此本文设计了基于自准直仪的绝对式测角仪装置,采用自准直仪和气浮转台结合测量的方法,实现了对光学器件绝对角度的测量。整个测量过程实现较高程度的自动化,测量结果精度满足设计要求。首先,本文总结了国内外各
学位
痕量汞元素检测在环境与食品安全保障中具有重要意义,由于原子荧光光谱法具有操作简单、灵敏度高、检出限低等优势,被广泛应用于痕量汞元素检测领域中。本文从光源调制、检测光路设计、光强信号处理等方面开展研究,提出了一种用于激发光源启辉及内调制的驱动设计方法,研制了基于原子荧光光谱的痕量汞元素检测系统,并完成了实验验证。论文主要工作如下:1、分析对比了基于不同原理的痕量汞元素检测方法,提出了基于原子荧光光谱
学位
温度是人们生产生活中最基本、最重要的物理量之一,对温度参量的准确测量至关重要。光纤温度传感器具有抗电磁干扰、尺寸小、响应速度快、耐腐蚀等优点,在医学检测、生命科学研究等领域有着广泛的应用前景。为了实现人体血管内血液温度等的检测,光纤温度传感器在灵敏度和尺寸等方面需要进一步优化。本文将具有高温度敏感特性的聚二甲基硅氧烷(PDMS)材料与光学干涉技术相结合,通过几何约束增强温度敏感机制,研究了基于微管
学位
水体运动时会携带大量泥沙,在流速变缓区域往往会造成泥沙淤积。这给河道整治、港口运输以及水库淤积治理等带来重要影响,因此需要利用高精度含沙量测量仪对水体含沙量进行测量。然而目前没有含沙量测量仪计量标准装置,无法对这些仪器进行有效标定,使得仪器数据可靠性差,在使用中造成了巨大经济损失。因此,搭建含沙量测量仪计量标准装置可以填补国内含沙量测量仪计量领域的空白,有效减少水运工程领域的经济损失,带来巨大的社
学位
弹性波广泛应用在各类装备的结构健康无损检测中。目前常用的弹性波传感器都是基于压电效应的,易受电磁干扰,具有谐振性,测量频带窄。光纤布拉格光栅(FBG)凭借其可嵌入、可组网、没有谐振性、抗电磁干扰等优势受到越来越广泛的应用,但是仍缺少面向宽频弹性波检测的解调系统。因此,本文开发了基于双FBG+PZT强度解调的宽频弹性波测量系统,并进行了两个典型的应用试验。主要研究工作包括:1.提出基于双FBG+PZ
学位
高效率强太赫兹辐射源的开发是进一步扩大太赫兹应用领域的重要前提条件之一。经过数十年的发展,科研人员已成功实现了从气体和固体中产生太赫兹波。然而作为生活中最常见的液体,液态水却鲜少被认为是一种潜在的太赫兹源,其主要的原因便是液态水对太赫兹频段具有极强的吸收系数。因此,寻找合适的方法削弱液态水对太赫兹波的吸收作用,并构建相应的宽带强场太赫兹辐射源系统,是对液态水产生太赫兹波这项研究的核心工作。基于以上
学位
频率分辨光开关法(Frequency Resolved Optical Gating,FROG)是目前最为通用的超短激光脉冲时域电场测量技术之一,其测量结果能够完备地表征被测超短激光脉冲电场的载波包络相位,因具有其还原结果准确、通用性强等优势而得到了广泛的应用。近年,层叠成像算法(Ptychographic)被用于FROG的测量迹线还原。该算法能够对稀疏采样的迹线进行还原,具有收敛速度快的优势。但
学位
动态坐标测量是开展运动过程监控与建模的基础。视觉测量方法因其精度高,非接触式测量等特点,在动态坐标测量领域具有重要应用,但基于面阵传感器的双目系统帧率有限,在高速测量方面存在局限性。基于线阵传感器的双目正交分光成像系统速度快、分辨率高,在动态测量中具有较大的发展潜力。然而目前该系统仍存在光斑坐标提取效率低、结构参数难以确定、同名点匹配困难等不足。针对上述问题,本文从实时多光斑亚像素级定位、系统结构
学位
基于深度学习的立体匹配方法,将模型建立在学习复杂图像特征的基础上,避免了人工特征一致性信息表达能力不足的问题,从而获取高精度、高鲁棒的深度数据,满足了无人驾驶、机器人引导等工程任务中三维信息精准感知的需求。然而,现有基于深度学习的高精度立体匹配方法对计算成本有着较高要求,难以在计算资源受限的条件下实现。针对这一问题,本文采用基于门控循环单元(Gated Recurrent Unit,GRU)的循环
学位