【摘 要】
:
随着社会的快速发展,人们的生活水平逐渐提高。但是与此同时,人们不规律的生活方式也使得更多疾病的发生,肿瘤甚至也变成了一种常见的疾病。脑肿瘤是常见的恶性肿瘤之一,其致死率较高,目前只有通过手术或放疗来治疗。因此,脑肿瘤的早期诊断对于改善患者的病情至关重要。核磁共振成像(Magnetic Resonance Imaging,MRI)可以帮助医生观察到病人大脑内部的情况,迅速地确定病灶区域。但是脑肿瘤具
论文部分内容阅读
随着社会的快速发展,人们的生活水平逐渐提高。但是与此同时,人们不规律的生活方式也使得更多疾病的发生,肿瘤甚至也变成了一种常见的疾病。脑肿瘤是常见的恶性肿瘤之一,其致死率较高,目前只有通过手术或放疗来治疗。因此,脑肿瘤的早期诊断对于改善患者的病情至关重要。核磁共振成像(Magnetic Resonance Imaging,MRI)可以帮助医生观察到病人大脑内部的情况,迅速地确定病灶区域。但是脑肿瘤具有不同的组织学亚区域,结构复杂,通过核磁共振扫描到的影像也存在不同的差异性,很难区分肿瘤和正常组织的边缘连接部分。通常都是由影像科专家手动标注进行分割肿瘤区域,但极其耗时,还可能存在误差。因此能够自动分割MRI图像的技术成为近年来计算机领域的挑战任务。为了实现脑肿瘤的精确分割,本文通过深度学习算法来针对该问题做出研究,具体工作如下:(1)提出一种基于U-Net的二维分割算法。首先将DenseNet中的密集连接块改进后融入U-Net中,利用密集连接块将每一次输入都包含了所有之前的输出,加强了连接块之间的信息传递和特征重用,提高了U-Net编码器的特征提取能力。并且将空洞卷积融入其中,以此来扩大卷积核的感受野,在不降低分辨率的情况下,提高了层与层之间的联系。随后加入条件随机场循环神经网络(CRF-RNN)对图像做精细分割,形成可以端对端的训练模型。通过对BraTs2018的二维切片数据进行训练验证,该方法实现了脑肿瘤的分割。(2)提出了改进的3D U-Net网络的脑肿瘤分割算法。首先对MRI图像进行预处理执行N4ITK偏置场校正,通过校正偏置场,解决扫描的强度不均匀性。在模型中融入空洞空间金字塔池化结构(Atrous Spatial Pyramid Pooling,ASPP),利用多个扩张率不同的空洞卷积,获得多尺度上下文信息提高特征提取能力。加入注意力机制(Attention Gate,AG),加强对特定区域有用的显著特征获取,抑制无关信息。网络中加入分割层以不同的分辨率创建多个分割图。用实例规范化代替了传统的批量规范化,以补偿由于内存限制而使用小批量训练导致的随机性。另外Exponential Logarithmic loss损失函数代替传统的线性Dice损失函数,通过损失函数中的参数调整控制,进而提高模型性能。通过BraTs2018数据集的验证,该方法有效提升了分割精度。(3)提出了基于3D SE-RESUNet脑肿瘤分割算法,该模型通过编码和解码模块来实现输入输出尺寸不变,在设计的残差模块中加入压缩与激励结构(Squeeze and Excitation structure)从特征通道之间的关系去自动获取每个通道信息的重要程度,从而提升有用信息的注重程度,抑制不重要的信息。通过残差模块加深网络,以及级联编码与解码部分,使模型可以更多的获取特征。并且使用Generalized Dice Loss来处理数据的类别不平衡问题。通过BraTs2018数据集的训练和BraTs2019数据集的测试,该方法有效地分割出了病症区域。
其他文献
RNA结合蛋白(RBP)是一类伴随RNA调控代谢过程,且与RNA结合的蛋白质的总称。一种RBP可能存在多种靶标RNA,其表达缺陷会造成多种疾病。通过寻找功能结构相似的RBP可以为治疗癌症等疾病的RNA疗法提供帮助。在RBP识别的过程中,一个关键的步骤是获取RNA有效特征和使用RBP之间的结合相似性网络来学习它们之间的联系。本文针对上述描述的RBP识别提出了两个多视角多标签特征学习的新策略,较已有的
在复杂工业过程中,对运行中的某些关键变量进行实时监控具有重要的意义,然而受到技术条件有限、检测装置昂贵以及现场环境恶劣等不利因素的影响,这些变量难以利用硬件传感器检测得到。在这种情况下,软测量技术得到应用,通过训练集构建数学模型,实现对新样本质量变量的实时估计。软测量技术通常需要大量有标记样本才能完成高精度模型训练,然而在实际工业过程中常常是无标记样本数量较多,有标记样本数量稀少,且获取成本高。因
音频携带了城市中大量关于日常环境、生活场景和物理事件的信息。通过深度学习方法智能分类识别出各个声源并提供相应的运用与服务,在构建智慧城市中具有巨大的潜力与应用前景。其被广泛运用于噪音监控、城市安防、多媒体信息检索、智慧工厂等方面。但当前已有的城市音频分类模型仍存在分类准确率不够高、泛化能力不够强以及噪音鲁棒性较弱等问题,针对上述问题论文进行了如下研究:(1)为解决城市音频分类领域中现有模型分类准确
多自主体系统协调控制是近几十年的热门研究领域,其研究成果大量应用于无人机编队飞行、无线传感网络和多机器人协调控制等工程领域。一致性控制是多自主体系统协调控制的分支研究领域,控制目标是通过自主体之间的控制协议,利用局部的信息,使所有自主体状态趋于一致。而固定时间一致性控制,要求所有自主体在固定时间内实现状态一致,比传统一致性控制收敛速度更快。在实际工程环境中,干扰和非线性动态会影响系统稳定性,是不可
孪生支持向量回归机(Twin Support Vector Regression,TSVR)是一种解决回归问题的机器学习算法。由于TSVR只需求解一对规模较小的二次规划问题,其训练效率高于支持向量回归机,因此TSVR已逐渐成为机器学习领域的研究热点。但是,目前TSVR的训练算法大部分都只是离线训练算法,无法高效处理在线增量学习问题。本课题致力于提升TSVR三种变体在增量环境下的训练效率,设计其相应
近年来,多自主体系统一致性问题已成为学术界的研究热点,并在传感网络、航天探测以及电力能源等领域得到了广泛应用。一致性问题是指利用自主体的局部交互信息设计合适的控制协议,使所有自主体的状态最终达到相同。为了节约有限的资源,事件触发控制策略被应用到一致性协议中。在事件触发控制中,只有当测量误差触发函数超过预设阈值时,自主体才进行通信和控制器更新。为顺应通信环境的要求,事件触发一致性问题的研究逐渐从固定
视频行为识别就是在不需要人为干预的情况下,综合利用计算机视觉、模式识别、图像处理、人工智能等诸多方面的知识和技术对摄像机拍录的图像序列进行自动分析,实现动态场景中的人体定位、跟踪和识别,并在此基础上分析和判断人的行为,其最终目标是通过对行为特征数据的分析来获取行为的语义描述与理解。视频行为识别技术可用于自动驾驶、人机交互、智能安防监控、智能家居监护等领域。因此,对视频行为识别的研究有着重要而广泛的
迭代学习控制是一种广泛应用于执行重复任务的高性能控制方法,其直接根据之前批次的系统输入输出信息不断修正更新当前批次的控制输入信号,最终在有限时间内实现对参考轨迹的完全跟踪。将优化理论与迭代学习控制技术相结合,能够得到最优型学习控制器以实现快速跟踪。然而在实际的工业过程中,系统输出往往不需要跟踪完整的参考轨迹,只需要在某些特定时间点处跟踪上给定的参考值。例如机器人的“取”和“放”操作,只需要专注于拾
间歇过程具有生产灵活的特点,广泛应用于化妆品、食品、药品等领域。迭代学习模型预测控制(ILMPC)兼具迭代学习控制(ILC)和模型预测控制(MPC)的优点,具有良好的抗干扰能力和约束处理能力,在间歇过程关键过程变量的轨迹跟踪中得到了广泛的应用。然而,ILMPC的预测模型是建立在原始变量空间的,变量间的共线性和高维性使得预测模型的开发变得困难和耗时。其次,ILMPC也存在在线计算量过大的问题。并且,
切换正系统由有限个正的子系统以及一组切换信号组成。切换正系统既有切换系统复杂的动力学行为特性又具有正系统独特的状态非负特性,因此针对此类系统相关控制问题的研究也相对棘手。切换正系统在控制领域应用广泛,并与经济、生物、通信等众多实际生活领域密切相关,因而引起了学者们的极大关注。实际工程应用中,系统短时间内的动态行为变化至关重要,很多系统满足无限时间区间的稳定性能却不能满足短时间区间内的性能指标。典型