界面强度对环氧树脂/粘土纳米复合材料力学性能的影响

来源 :沈阳化工大学 | 被引量 : 0次 | 上传用户:allans
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
聚合物基纳米复合材料近些年来受到国内外学术界与工业界的瞩目。与常规聚合物基复合材料相比,这种聚合物纳米复合材料最突出的特点在于只需添加很少的纳米填料(3~5wt%)就可以实现复合材料诸多性能的显著提升,并且不损失材料原有的特性。通过添加纳米填料实现聚合物基纳米复合材料性能的提高有两个关键因素:一是纳米填料需以高度无规剥离状态均匀分散在基体中;二是在聚合物基体和纳米填料之间构建一定强度的界面作用力。本实验室创立的“粘土淤浆复合法”已经成功解决了粘土在聚合物基体中均匀分散并且高度无规剥离这一关键问题。如何在聚合物基体与纳米粘土之间构建较强的界面作用力以及界面强度对纳米复合材料力学性能的影响是这一领域的关键和难点。本文以环氧树脂(EP)为基体,采用两种不同的策略在环氧树脂基体和粘土片层间成功构建了较强的界面作用力,重点研究了不同界面强度对EP/粘土纳米复合材料力学性能的影响。主要研究结果如下:1.用溴代正丁烷(BB)与等摩尔的2,4,6-三(二甲氨基甲基)苯酚(DMP30)反应,制备了保留部分叔胺基的反应型季铵盐(BBDMP30);同时通过对DMP30的酸化反应合成了与BBDMP30结构相似的非反应型有机修饰剂(CPDMP30)。分别以这两种化合物作为有机修饰剂对原始粘土进行改性,获得了两种性质不同的有机化粘土(反应型的BBDMP30-clay与非反应型的CPDMP30-clay)。以这两种粘土为增强体,通过“粘土淤浆复合法”制备了具有相同无规剥离结构但界面强度不同的两种环氧树脂/粘土纳米复合材料,通过透射电子显微镜(TEM)及X-射线衍射(XRD)测试揭示两种不同性质的有机粘土都以高度无规剥离形式分散在环氧树脂基体当中。在此基础上,探究了界面强度对环氧树脂/粘土纳米复合材料力学/热机械性能的影响。拉伸测试结果表明:粘土质量分数为3.5%时,BBDMP30-clay/EP纳米复合材料的拉伸强度提高幅度达250%;这可归因于BBDMP30-clay上保留的叔胺基团在固化阶段参与了固化反应,在粘土片层与环氧树脂基体间形成了较强的界面作用力。非反应型的CPDMP30-clay因所构建的界面强度相对较弱,只能使纳米复合材料的拉伸强度提高190%。动态力学分析(DMA)显示BBDMP30-clay导致纳米复合材料的玻璃化转变温度(Tg)提高了6℃,而CPDMP30-clay仅使得材料的Tg提高了3℃。2.将质子化的乙醇胺(MEA)用作有机修饰剂改性粘土,得到乙醇胺改性粘土(MEA-clay)。在环氧树脂/MEA-clay纳米复合材料制备过程中添加叔胺2,4,6-三(二甲氨基甲基)苯酚(DMP30)作为催化剂,促使有机修饰剂上的羟基与环氧预聚体上环氧基团发生反应,从而在环氧树脂基体与粘土片层间形成了化学健,从而构建了较强的界面作用力。同时制备了不添加催化剂的环氧树脂/MEA-clay纳米复合材料(界面作用力为中等强度的氢键)作为参比。透射电子显微镜(TEM)及X-射线衍射(XRD)测试揭示两种不同途径制备的环氧树脂/粘土纳米复合材料具有近似的无规剥离/插层混合结构。拉伸测试结果表明:粘土质量分数为3%时,催化体系制备的纳米复合材料的拉伸强度提高了176.92%,而非催化体系则为147.69%。动态力学分析(DMA)显示两种不同体系制备的纳米复合材料的玻璃化转变温度(Tg)分别提高了1.53℃和0.54℃。
其他文献
学位
学位
学位
学位
学位
学位
70Mn钢是一种优质的碳素结构钢,具有较好的综合力学性能,多用于制造耐磨、载荷较大的机械零件,如弹簧圈、止推环、离合器盘、锁紧圈、轴承和轴承保持架等。在工作过程中,这类零件会受到冲击、振动等动载荷作用发生磨损、疲劳,会导致这类零件的故障增加,从而带来安全隐患和经济上的损失。本论文为实现70Mn钢表面的微小直径激光重熔强化,70Mn钢表面在不同扫描速率和不同激光功率下制备“条纹型”重熔单元,探究不同
在如今飞速发展的无线传感器网络(Wireless Sensor Networks,WSNs)中,每一个普通节点都被用来采集外界环境的数据,并将其不断感知到的数据信息传递给融合节点,融合节点再通过汇聚节点将数据层层转发至基站,由基站对收集的数据进行一系列的分析、处理、决策后,再通过远端的互联网或卫星将最终结果传递给终端应用系统或用户。如今WSNs因其灵活、实用以及廉价等优点,应用范围已经从理论研究拓
学位
小角X射线散射(Small Angle X-ray Scattering,SAXS)作为表征纳米结构的一种实验方法,在过去的几十年中得到了迅速的发展。特别是自从以同步辐射为X射线源以来,SAXS技术手段推动了许多科学领域的研究进展,贡献颇多。小角X射线散射方法可以利用高强度、高准直的同步辐射X射线源,对聚合物材料、多孔材料、介孔材料、生物大分子等各类样品进行原位研究,以获得该物质在纳米尺度上的结构