基于超薄导光板连注连轧成型的高聚物状态转变规律研究

来源 :深圳大学 | 被引量 : 0次 | 上传用户:RSH1987
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着现今科技的发展,大型液晶显示的应用越来越来广泛,如何低成本、高效率生产宽幅、大型超薄导光板成为一研究热点。而连注连轧成型技术为超薄大型宽幅微结构高聚物板材成型提供了一种全新的方式,该技术结合了注射压缩成型与轧制热压印成型的特点,通过注射填充、精轧定型可连续生产超薄大型宽幅微结构导光板。本文基于连注连轧成型技术,对注轧区高聚物导光板成型过程状态转变规律进行系列探究,优化了成型工艺。首先对连注连轧条件下高聚物流变特性进行相关研究,利用单料筒毛细管流变仪对口模尺寸分别为φ0.3mm、φ0.5mm、φ1.0 mm和φ2.0 mm下非晶高聚物聚甲基丙烯酸甲酯(PMMA)熔体的剪切黏度进行测试,研究了基于特征尺寸的高聚物黏流活化能和非牛顿指数特性。而后分析PMMA熔体流变规律并建立基于特征尺寸的黏流活化能模型(SVAE模型)、非牛顿指数模型(SNNE模型)。该方法可以方便、准确地计算出高聚物材料的黏流活化能和非牛顿指数,为连注连轧加工参数的选择及优化提供一定的理论指导。针对连注连轧注轧区高聚物材料温度转变特性,考虑热辐射、热传导和塑性变形等对注轧区高聚物熔体转变的影响,结合数学解析方法建立不同轧制速度、不同压下率和不同轧辊温度等条件下的超薄导光板在不同注轧变形区域的温度场理论模型。随后基于该温度场理论模型,通过Fluent有限元软件对注轧区高聚物成型流动过程温度场进行数值求解,发现利用注轧变形区温度场数学解析理论模型对传统有限元数值计算模型边界进行修正,提高了有限元数值计算的预测精度,平均误差仅为2.4%,能够更加准确地描述连注连轧成型工艺过程注轧区温度场变化的实际情况。在注轧区温度场理论模型基础上建立注轧区稳态热-流耦合有限元模型,分析了注射温度、注射速度、轧辊温度、轧辊转速、压下率等工艺参数对高聚物熔体状态转变(高弹态转变线Rs点、玻璃态转变线Gs点)及注轧区流场的影响规律。建立了Rs点与Gs点距注轧出口水平距离与各工艺参数间的综合预测模型,分析注轧出口质量较佳时的PMMA导光板对应的Rs点与Gs点的水平位置,并计算所对应的各连注连轧最佳成型工艺参数。最后进行PMMA超薄导光板连注连轧生产实验,成功制得了高质量的超薄导光板。发现板材出口温度控制较好与数值理论计算值相吻合,板材厚度整体均匀;导光板表面各尺寸V型微结构复制率较高,微结构轮廓清晰成型精度较高;导光板最大透光率为90.2%,雾度为0.51%,满足光学器件的光学性能要求。说明对注轧区高聚物成型状态转变机理的研究,有助于提高连注连轧制品质量。
其他文献
原发性肝癌是我国发病率高的、死亡率高、危害极大的恶性肿瘤之一,严重威胁我国人民健康和生命。目前肝癌临床上常用的治疗方法包括手术、介入、化疗及放疗等,但在应用过程中也发现很多不足,如复发率高、化疗药物不敏感及耐药、患者术后生活质量低等。现代医学研究发现中医中药在化疗药物减毒增敏及提高患者生活质量等方面均发挥出重要作用。肿瘤细胞糖代谢重编程是指肿瘤细胞即便在氧气充足的情况下也依靠糖酵解供能,同时产生大
层状双金属氢氧化物(Layer Double Hydroxide,LDH)是一种对特定应用设计和制备结构规整可控的二维纳米材料。广泛应用于电、光、磁、机械、材料等领域。具有灵活可调性的二、三价金属阳离子均匀分布在片层内,而为了维持电荷平衡的阴离子处在片层间,具有便捷可交换性。但由于其片薄质轻,纳米片在分散液应用过后难以分离回收。制备条件常需高温高压等苛刻条件,故而无法大量工业生产。因此开发出简易的
有机发光二极管(Organic Light-Emitting Diode,OLED)作为新一代的显示技术具有自发光、色域广、可柔性化制备等优点而受到广泛研究。尽管OLED已成功商业化,但是由于红光的能系规则和蓝光的载流子注入和传输平衡等问题,发展高效率、长寿命的红光和蓝光材料仍然具有挑战。具有给体(Donor)-受体(Acceptor)体系的分子材料由于具有同时传输电子和空穴的能力可以很好地平衡载
Co-Fe LDH层状双金属氢氧化物是一种重要的芬顿与类芬顿催化剂,具有易合成、稳定性高、较为廉价、以及比表面积大等诸多优势,所以在近些年的研究越发重视。但是目前Co-Fe LDH最佳催化环境为酸性,这导致催化剂寿命短,且存在二次污染的风险。所以为了进一步提高Co-Fe LDH的性能,本文以Co-Fe LDH作为研究对象,研究其类芬顿性能,并在此基础上对其衍生物的类芬顿性能做了系统性研究,研究内容
诱导多能干细胞(Induced pluripotent stem cells,iPSC)类似胚胎干细胞,是一种全能干细胞,具有自我更新和多向分化潜能。iPSC在组织工程和疾病模型中具有广泛的应用,其中最显著的应用是将病人的成体细胞转变成hiPSC,并定向诱导病人特异的hiPSC分化为间充质干细胞(Mesenchymal stem cells,MSC)进行疾病模型的建立,机理研究和临床治疗。但是目前
皮肤是人类身体最大最普遍的组织,覆盖人体各个部位,保护我们的机体免受外部环境的侵害。近年来,随着我国人口老龄化与生活方式的改变,糖尿病的发病率逐年升高,导致糖尿病足溃疡也从一种少见病变成了常见病。对于糖尿病足溃疡造成的伤口,仅依靠皮肤自身的修复能力难以愈合且容易复发。针对糖尿病足溃疡的伤口,当前主要是采用敷料、支架或皮肤替代品来促进愈合,其中敷料应用最为便捷。但是传统敷料需要频繁更换,且换药时伴随
非晶合金具有优异的力学、化学和物理性能,如高的强度和硬度、优异的软磁性、高的耐磨性和耐腐蚀性,具有广泛的应用前景。然而,采用传统的制备方法如铜模铸造、单辊刷带、电弧熔炼吸铸等方法很难制备大尺寸的块体非晶合金,并且非晶合金的脆性使其难以利用传统方法进行加工,这严重制约了块体非晶合金的发展和应用。选区激光熔化技术(Selective Laser Melting,SLM)是增材制造技术的一种,通过对金属
随着能源危机和环境污染的日趋严重,寻找一种清洁且有效的热能存储技术变得至关重要。在众多的热能存储技术中,基于相变材料(Phase change materials,PCMs)的热能存储是一类非常有前途的储热技术,PCMs可以通过自身相态的转变来吸收或释放大量潜热而备受欢迎,该材料在过去十年中一直是国内外研究的热点。相变材料的微胶囊化,解决了相变材料在使用过程中易泄露的问题,扩宽了相变材料的应用领域
奥氏体不锈钢具有稳定的奥氏体组织,包括应用广泛的304不锈钢(18Cr-8Ni)和在此基础上增加Cr、Ni含量并加入Mo、Cu、Si、Nb、Ti等元素发展起来的高Cr-Ni系列钢,属于镍铬不锈钢。奥氏体不锈钢无磁性而且具有高韧性、塑性和优良的耐腐蚀性能,但强度较低。奥氏体作为一种亚稳态相,在塑性变形和热处理条件下均可能发生马氏体相变,这为晶粒细化提供了有利条件,从而显著提高奥氏体不锈钢的强度。对于
随着高新技术的发展,工程领域对金属材料提出了特殊的性能要求。负泊松比结构因其独特的变形特性和优异的力学性能引起学术界的广泛关注。在以往的研究中,研究对象大多为二维结构,对三维负泊松比结构尚缺乏系统的研究,对于负泊松比结构的应用更是少之又少,因此,不断探索负泊松比结构的力学性能将为负泊松比结构的应用打下坚实的理论基础。本文以三维内凹结构为研究对象,通过准静态压缩试验和分离式霍普金森压杆试验探究材料的