波导-微腔耦合结构在荧光检测中的应用研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:king_wda
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
荧光传感具有优异的光学性能,以及高灵敏度、检测方法便捷、响应快等优势,已广泛应用于生物监测、疾病诊断、药物分析、生物成像和化学分析等领域。光流体技术是流体学的一个快速发展分支,而基于光流体学的荧光传感领域的重大发展显著扩大了微传感器的应用范围。微流体的荧光检测可以基于荧光发射的荧光光谱或通过读取荧光发射强度,对于这两种方法,它们的低成本、分辨率高和荧光信号检测的高灵敏度特性,以及荧光团标记的光谱性使荧光与微纳流体结合的方法成为生物学、化学、医学、生物技术、药物检测和环境监测的最重要手段。其中对微纳流体中的荧光纳米粒子的高效检测在当今医学、生物、化学等领域变得愈发重要,如何对微纳流体的纳米粒子进行高效的检测与跟踪仍是一个有待解决的问题,因此基于对纳米荧光标记物在流体中的荧光发射强度的读取可实现对微纳流体的纳米粒子进行高精度的检测。本文通过对荧光输出强度的读取,提出了两种波导-微腔耦合结构,并系统的研究了该结构对微纳流体中的纳米粒子检测的研究。主要内容如下:第一个研究工作是提出了一个波导—同心环形谐振腔结构,通过该结构实现了对纳流体中的荧光纳米颗粒的微位移检测。首先我们研究了荧光纳米微粒在不同偏振态下对荧光输出功率的影响;接着研究了结构的上方波导的宽度、结构的材料折射率、同心环形谐振腔的间距等因素对结构荧光输出功率的影响;最后研究了在0-1000 nm范围内移动的荧光纳米粒子对荧光输出功率的影响。最后研究结果表明在荧光纳米粒子在本章所提出的结构中在0-1000 nm范围内移动时,根据荧光输出功率峰值的变化可实现对纳米粒子进行实时动态微位移的检测,根据双波长下荧光输出功率保证了检测的灵敏性与准确度。与本课题组之前工作研究对比检测灵敏度更高,信噪比高。本研究工作对纳流体的颗粒检测开发具有一定的指导意义。第二个研究工作是提出了一个波导-谐振腔耦合结构,通过该结构基于比率荧光可实现了对纳流体中的荧光纳米颗粒的微位移检测。本工作是在第一个工作的基础上进一步的研究,由于对传统荧光发射强度的探测效率比较低,容易受背景噪声的影响,我们便提出利用对背景噪声不敏感的比率荧光实现对荧光纳米颗粒的微位移监测。首先同样我们研究了荧光的不同偏振态,对荧光输出功率比值的影响;接着研究了结构参数、纳流通道内生物溶液折射率、两个环形谐振腔的间距等因素对结构荧光输出功率比值的影响;最后研究了在0-100 nm范围内移动的荧光纳米粒子对荧光输出功率比值的影响。研究结果表明所提出的波导-微腔耦合结构当荧光纳米颗粒在0-100 nm范围内移动时,根据荧光输出功率比值的变化可实现对纳米粒子的微位移的高精度检测。与第一个工作对比本章研究工作可得到更精准的微位移检测,且不容易受到背景噪声的影响。本研究工作对微流体的检测、流体粒子的分析、生物监测等领域有着广泛的应用价值。
其他文献
煤气化细渣高值化处理和规模化消纳的关键之处在于如何高效对气化细渣中的残炭与无机组分进行分离。泡沫浮选是有效地处理微细粒矿物的分选方法,不仅可燃体回收率高,而且分离选择性好。但受限于气化细渣的特性,传统烃类油捕收剂浮选效果差,工业应用价值低。本文以北方某地气化细渣为研究对象,进行了工业分析、元素分析、粒度密度组成分析、矿相组成分析、表面官能团分析、表面形貌及比表面积与孔径分析。通过对气化渣的基础物性
学位
目前,煤炭仍是我国消耗量最多的能源,其燃烧产生的氮氧化物(NOx)、二氧化硫(SO2)、粉尘和诸如汞之类的重金属等物质造成了严重的大气污染问题。NOx会造成酸雨、光化学烟雾和臭氧层破坏等危害。汞具有剧毒性、迁移性和生物累积性,成为人们关注的主要空气污染物之一。如何高效脱除烟气中的NOx和汞,是目前环境领域的焦点课题之一。目前最成熟且高效的NOx脱除技术是氨气选择性催化还原(NH3-SCR),该技术
学位
随着各种有源、无源光纤器件的不断发展,光纤环衰荡作为一种在时域进行光纤传感的技术被广泛研究。在光纤环衰荡传感系统中,腔长和灵敏度需要折中考虑,光纤环的腔长越短,系统的探测灵敏度越高,但腔长较短时,光纤环衰荡输出的脉冲可能会发生重叠,导致无法准确的测量衰荡信息。将激光脉冲宽度减小到皮秒甚至飞秒可以解决上述问题,但超短脉冲在传输过程中的非线性光学效应将导致系统的复杂性明显增加。利用混沌激光的delta
学位
推动制造业高质量发展是我国经济发展中的重要任务。近些年,我国制造业发展速度日益加快,取得了极大的成就,但仍存在着大而不强、全而不优的问题。站在新的历史起点、面对新的发展格局,推动制造业高质量发展更加迫在眉睫。制造业结构高度化是制造业高质量发展的关键一环,促进高精尖技术制造业发展、推动制造业结构高度化势在必行,而这一过程的实现,离不开创新。创新是经济发展的重要引擎和力量之源。随着《创新驱动发展战略》
学位
高炉煤气精脱硫是实现钢铁行业多工序全流程超低排放的关键,而羰基硫水解催化剂的失活是技术应用中亟需解决的难点问题,对实现有机硫高效脱除有重要意义。探明高炉煤气中复杂气氛对COS水解活性的影响,以及催化剂活性组分对COS水解活性和抗硫抗氧性能的影响至关重要。因此,本文以γ-Al2O3为载体,制备了碱金属Na/K、过渡金属Fe、稀土金属La为活性组分的三类水解催化剂,以提高COS水解活性。在固定床-气相
学位
建立了颗粒流子弹发射有限元模型,利用离散元和有限元的联合模拟方法,研究了高速颗粒流冲击负泊松比内凹蜂窝夹芯梁的动态响应及缓冲吸能机理。分析了加载冲量、冲击角、芯材强度以及颗粒流子弹与面板间的摩擦力等因素对夹芯梁动态响应的影响。研究结果表明:夹芯梁在正向颗粒流子弹冲击载荷作用下表现为局部凹陷和整体弯曲的耦合变形模式,面内设计芯材因胞壁弯曲呈现局部内凹的变形模式,面外设计芯材因胞壁屈曲呈现局部褶皱的变
期刊
我国的教育不断发展,要求各学科教师改革教学方法,促进课堂效率提高。其中体育教育往往会被忽视,因而需要提高学校和教师对体育教育的关注。基于寓教于乐的教育理念,小学体育教师要积极地创新教学方式,将体育游戏应用到小学体育教学中去。教师应该创新教学方法,将体育教育与游戏相融合,通过游戏引导学生树立体育学习思维,激发学生对体育的喜爱之情。建设趣味课堂能够有效地利用游戏引起学生对体育学习的兴趣,游戏化的教学是
期刊
切顶成巷技术通过对顶板进行超前预裂,使得采空区与巷道之间的覆岩载荷传递路径被切断,工作面回采后围岩应力集中转移至实体煤内部,从而巷道上方岩层内产生低应力区,并联合顶板补强支护、临时支护以及挡矸支护等技术,对围岩变形进行控制。虽然目前切顶成巷技术在复合顶板、破碎顶板条件下的各类不同倾角薄煤层、中厚煤层工作面成功应用,但尚未在大采高厚灰岩顶板条件下对该技术展开理论和试验研究。本文以永宁煤矿10202运
学位
为研究碳纤维/环氧树脂复合材料在超高速撞击下的成坑特性,利用二级轻气炮开展了直径为1.00~3.05 mm的铝球以3.0~6.5 km/s的速度正撞击尺寸为100 mm×100 mm×20 mm的碳纤维/环氧树脂复合材料靶板的实验,获得了碳纤维/环氧复合材料靶板的成坑形貌特征,并测量了坑深、成坑表面积、表面损伤面积等尺寸。结合文献数据分析了靶板的无量纲成坑深度p/dp、无量纲坑径系数Dh/dp、表
期刊
煤层气作为一种清洁能源,加强煤层气的开采和利用,可以缓解资源紧张的问题,同时也可以降低瓦斯突出爆炸的风险。煤体的渗透性决定了煤层气的开采效果,注热开采煤层气技术是一种高效增产技术,为了探究注热开采煤层气过程中煤体渗透率的演化机理,利用高温多功能三轴试验系统,进行不同应力状态下煤体的增温渗流试验、热膨胀试验、降压解吸试验、增温解吸试验以及变温条件下的渗流试验,探究在30-150℃增温过程中热膨胀和解
学位