激光扫描双目立体视觉成像系统设计与目标测量

来源 :天津理工大学 | 被引量 : 0次 | 上传用户:yxhetao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为提高无人车识别前方行人及车辆的识别速度和准确性,提出了一种激光扫描双目立体视觉成像方法。针对现有匹配方法抗干扰能力弱,不能快速高效的识别出物体的间距,并且误差太大等不足,提出了基于激光线的强特征点匹配方法。此方法模拟人的双眼观察车前环境。采用激光扫描模块和双目视觉结构构建双目立体成像系统;利用扫描到物体上的激光线作为左、右视图的强特征线索进行双目视觉匹配,从而进行物体的深度测量感知。本文选择张正友相机标定方法对相机进行立体标定,获得双目视觉成像系统的参数,对左右相机图像进行立体矫正后,把激光线扫描光作为像素匹配的强特征进行双目相机匹配。对比被动视觉的双目匹配,本方法可以实现快速匹配测距,并且具有较高的准确度。通过主动双目视觉获得特征点的双目视差后,根据双目视觉理论可计算获取前方物体的三维点云数据。本文实验首先在室内环境下探讨激光扫描双目视觉成像系统的参数变化对物体测量深度值精度的影响;然后选择精度最高的系统参数在室内环境下对实际目标物体进行三维重建实验;最后在室外环境下进行实验,本系统目前采用的红光谱段激光能够有效的重建出目标表面弧度,但因室外光强的原因,在白天光线较好的情形下,探测目标具有有限,存在一定的局限性。在暗照度光照条件下,测量台阶深度相对误差约为1.9%,台阶间距相对误差约为0.5%。调整硬件配置,采用可见光激光,分别在室内和室外进行实验。红外谱段激光与滤光片的配合使用,对室外光强的适应性有所提高,相对误差率降低到0.4%,提升了同等条件下目标探测距离的局限性。本文研究和实验表明,本文提出的激光扫描双目视觉成像系统具备前方目标测距功能,因激光线强特征匹配的优势,能够加快双目匹配速度,具备在无人驾驶系统中应用的潜能。
其他文献
人工智能的广泛应用对生产生活有着重要意义,深度学习技术的异军突起也推动着该领域各种优秀算法的不断进步,然而这些都离不开海量数据的推动。大数据时代背景下,大量且有价值的数据是不断提升人工智能算法性能的重要保障。数据量不足,质量较差,数据标注不完善是困扰每一个人工智能算法研究学者的难题。尤其在计算机视觉领域中,高质量的图像数据也是推动视觉算法不断进步的重要前提。然而因为各种技术原因或者成本原因等难以获
高强度钢由于其良好机械性能与低成本等优势被广泛应用于航天航空、造船、能源运输和汽车等领域。近年来,随着各工业领域产业化不断升级,对高强度钢综合性能提出更高要求。而研究发现磁场热处理对高品质高强度钢的研究与开发具有重要意义,磁场热处理工艺能够通过控制相转变和碳化物析出来优化材料强韧性能。基于此,本文将含有Nb、V、Ti等微合金元素的25Cr Mo48V高强度钢作为研究对象,采用金相显微镜、扫描电子显
当前经济发展模式的转变使高质量发展成为建筑工业化转型的核心要义,也是实现建筑业转型升级的必要步骤。产业环境的改变、经济增长模式的转变使原有的以经济增速为主的评价指标已经不适用于现在的高质量发展模式,有必要重新构建建筑工业化转型的评价指标体系并进行转型质量测度分析,在全方位合理的指标评定中感知建筑工业化转型质量的变化情况,及时对方向和方式作有效调整,以便高效推动建筑业高质量发展和优化。基于对建筑工业
随着化石燃料的快速消耗,导致出现环境污染和资源短缺等后果,太阳能、潮汐能等环保能源获得很快的发展,新型储能系统对可再生资源的利用起到关键作用,其中钠离子电池表现出较佳的安全性能和低廉成本等优点,是一种极具产业应用潜在能力的体系。在电极材料的研究中,利用生物质作为碳源制备的硬碳材料显示出资源储量丰富和对环境友好等优点,表现出广阔的市场前景,引起大规模关注。然而在大量的研究报道中,生物质硬碳材料存在较
朴素贝叶斯算法是一种以贝叶斯原理为基础,基于概率知识、有着坚实数学基础的分类算法。其具有易构造、易理解、高效性等优点,一直是机器学习中最常用的算法之一,目前已经在人脸识别领域中被广泛应用。然而朴素贝叶斯算法强大的分类性能基于一个在实践中很少是正确的条件独立性假设,对于具有强大依赖关系的数据,会影响其分类效果。为了解决这一问题,很多的改进方法被提出,其中属性加权方法取得了很好的成果。但如何对属性进行
随着吸振器的不断发展,许多弹簧类减振结构相继被开发出来,被广泛的应用在生产生活各个领域。弹簧基非线性能量阱结构在使用过程中,总不可避免地存在着弹簧的刚度误差。如果不能探索误差对吸振器吸振效能的影响并采取相应措施,对结构的危害是不可估计的。因此对于刚度误差的许可范围的研究,是一个很有现实意义的课题。本文研究了纯非线性能量阱以及非光滑非线性能量阱的刚度误差许可范围,分别研究吸振器中的弹簧在拉伸或者压缩
传感器测量精度的持续提高和嵌入式设备功能的不断完善为预测和健康管理系统(Prognostics and Healthy Management,PHM)应用提供了硬件支撑。PHM系统中的故障诊断方法是装备全生命周期状态检测的关键,齿轮箱是部队装备中典型的易损机械部件,且齿轮箱作为常见的旋转机械,广泛应用于各个领域,本文的研究重点是配有PHM的齿轮箱全生命周期维修保障问题。首先,对PHM的概念及其流程
紫外、尤其深紫外波段激光在激光微加工、高密度光存储和激光光刻等方面具有重要应用,而非线性光学晶体和双折射晶体是固体激光器输出紫外激光并实现激光调制的核心基础材料。本文旨在设计、合成新型紫外非线性光学晶体和双折射晶体,选择硼酸盐为主要研究对象,通过在硼酸盐中引入易极化的Y-O结构基元和大电负性的卤素阴离子,成功设计合成出了10种碱/碱土金属含钇硼酸盐新晶体。用单晶X射线衍射技术确定晶体结构,并通过红
染料带来显著的社会、经济效益,但也造成了严重的水污染。吸附和光催化是处理染料的有效方法,制备同时具有吸附和光催化性能的材料将大大提高染料的处理效率。本论文制备了26面体Cu/Cu2O复合材料并研究了其对甲基橙(MO)的吸附能力,同时制备了CQDs/Cu2O(简写为CQDs/0TD)和CQDs/Cu/Cu2O(简写为CQDs/3TD)复合材料,并研究了它们光催化降解MO的能力。(碳量子点简写为CQD
锂离子电池由于其工作电压高,能量密度大,环境污染小等特点,正逐步取代传统化石能源,业已成为促进社会发展、提升生活质量的必不可少的工具。合金化型负极材料能够在不受材料晶体框架限制的情况下储存大量锂,因而在理论比容量方面具有巨大优势;然而,脱嵌锂过程中会产生巨大的的体积变化,导致材料基体出现开裂、断裂等现象,这些问题都限制着合金化型负极材料的发展。目前对于合金化型负极材料的改性研究主要集中在提升材料首