天然橡胶及其硫化橡胶热解的分子动力学模拟研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:wsx19781029
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着交通运输业的发展,废旧橡胶的产量日益增加,如何有效处置废旧橡胶已经迫在眉睫。采用热解的技术实现热化学回收是资源化处置废旧橡胶的最佳途径之一。本文以天然橡胶及硫化天然橡胶为研究对象,采用反应分子动力学模拟的方法,针对热解产物分布、硫的迁移转化以及水蒸气对热解过程的影响等方面开展了相关研究。首先,以天然橡胶为研究对象,通过实验和反应分子动力学的方法研究了天然橡胶热解动力学特性。研究结果表明:通过实验和反应分子动力学模拟的数据计算出最大失重率下的反应活化能相近,分别为164.75 k J/mol和156.72 k J/mol,表明本研究的模型与模拟方法可行。其次,以环状单硫和环状双硫两种硫化交联结构为研究对象,建立相应的硫化橡胶分子模型。在不同升温速率(5 K/ps、15 K/ps和50 K/ps)和不同温度(2400 K、2600 K、2800 K和3000 K)下,开展热解分子动力学模拟。研究结果表明:天然橡胶热解主要气态产物为H2以及C1~C4烃类物质;升温速率越小、温度越高,热解后期的二次反应程度越剧烈:导致热解气的产量增加,而轻质油产量降低,同时因二次聚合反应生成的重质油产量也呈增加趋势。H2S是硫化天然橡胶热解生成的主要气态含硫产物。随着温度的升高,H2S的含量增加;液态含硫产物在低温下主要以硫醇、硫醚和含硫自由基的形式存在,在高温下主要以噻吩类物质的形式存在。最后,建立包含不同数量水分子的天然橡胶及其硫化橡胶模型,考察水蒸气气氛对热解产物分布及硫迁移转化的影响。研究结果表明:水蒸气气氛能够促进裂解反应,提高热解气的产率,抑制重质油的二次生成,此外还可以促进H2S的生成。H2O分子主要通过生成OH自由基以及与碳氢自由基反应来促进橡胶的热解。水分子中的氧原子与碳链中的碳原子反应生成的R-C-OH自由基是CO及其它含氧产物的主要前驱体。
其他文献
水合盐类相变材料是目前相变储热技术常用的储热材料之一,该类材料具有储热密度大、价格低等优点,但是过冷与相分离现象阻碍了该类材料的发展。基于这个情况,选取了三水醋酸钠(SAT)与十二水磷酸氢二钠(DHPD)作为研究对象,研究了如何改善其过冷的情况。用差示扫描量热仪研究了纯三水醋酸钠与纯十二水磷酸氢二钠基本的热物性,并将两种水合盐加热至完全熔化后放置在20℃冷却环境中,获得了两种水合盐冷却曲线。结果表
学位
传统液态电解质动力电池存在漏夜、析氧和容易热失控等安全性问题。固态电解质电池因其高能量密度、高安全性的优势逐渐成为了新的研究热点。本文首先使用COMSOL Multiphysics5.6软件对固态电解质电池进行仿真建模,选择了电化学、固态传热与力学在内的物理场对模型进行了计算,完善了固态电解质电池的行为仿真,达到了综合分析全固态电池的目标。在电化学模型的仿真中,使用三次电流分布与稀物质传递物理场研
学位
在后摩尔定律时代,电子器件的散热需求急剧上升,微通道由于冷却通量大、换热效率高等特点,成为解决大热流密度电子器件散热问题最具前景的方向之一,但常规微通道已很难满足电子器件的散热需求。本文测试了大高宽比微通道散热器的综合性能,并通过仿真探究了凹槽结构对其性能的影响。首先,本文设计了大高宽比微通道散热器并搭建了其性能测试平台,开展了模拟热源持续加热和间歇加热两种模式下的性能研究。其次,建立了微通道散热
学位
随着经济社会的发展,气候变化已成为全世界共同关心的问题。交通领域是碳排放量较大的三大领域之一,是我国碳减排的重要领域。湖北省作为我国的交通枢纽,碳减排压力巨大。研究湖北省交通领域碳减排潜力对助力双碳目标的实现具有重要意义。论文以湖北省交通部门为研究对象,采用因素分析法和LEAP模型对湖北省交通部门的碳排放影响因素、碳减排潜力和低碳交通发展路径进行了分析研究。首先对湖北省交通部门发展现状进行数据调研
学位
安全壳作为核电站纵深防御系统的最后一道实体屏障,其气密性对核电站安全有着重要意义。人员闸门等贯穿件是安全壳的主要泄漏源之一,有必要对其密封性能展开研究。人员闸门多采取双密封结构,而这类密封结构的泄漏规律和影响因素还未得到充分研究。本文在静密封泄漏机理与双密封结构泄漏特性研究基础上,给出了针对安全壳人员闸门双密封结构的泄漏率数值计算方案。首先,基于粗糙表面数值重构和微孔结构介观尺度流动分析相结合的方
学位
质子交换膜燃料电池系统在工作过程中往往在阳极通入过量的氢气,喷射器结构简单、无功耗,是氢气循坏的理想装置,但喷射器的工作范围有限,在远离设计工况时工作性能急剧下降,因此本文探究各负载工况下如何扩大喷射器的工作范围,提升其引射性能。研究结论对应用于变负载质子交换膜燃料电池阳极系统喷射器的结构优化及性能提升有一定参考依据。本研究根据80 kW质子交换膜燃料电池工作参数确定喷射器运行参数及设计工况,采用
学位
“液态阳光”甲醇作为内燃机的一种替代燃料,有助于我国实现双碳目标。但甲醇发动机在低温环境下难以着火,使用微波辅助点火技术可以增强点火过程进而有效解决甲醇发动机的着火问题。因此,基于定容燃烧弹系统,本文采用微波辅助点火技术进行了不同环境因素和微波参数下的甲醇试验研究,为在甲醇发动机中应用微波辅助点火技术提供技术指导。本文首先对比了甲醇与异辛烷(代表汽油)两种燃料的微波点火特性,发现不同条件下甲醇均比
学位
固态电解质膜(SEI)是锂离子电池内部的一层薄膜,能够阻止电子的通过,而对离子有很好的导通性,对电池使用时的安全性和性能有着重要的影响。SEI的成分、结构及形成机理与其传输特性密切相关,目前尚无较为完整的理论揭示SEI的传输特性。本文针对SEI内层最常见的两种无机盐成分LiF和Li2CO3的电子传输特性和离子传输特性展开研究。在电子传输部分,以一维电子隧穿模型为基础,得到了两种材料阻碍电子隧穿的临
学位
随着各国航天事业的不断进步,现代飞行器正向着高超声速的方向发展,更快的飞行速度也意味着更复杂的飞行环境。飞行器高速飞行时,表面与高速气流摩擦产生极大的气动加热,飞行器表面材料性能受到考验。同时,舱内设备发热升温会降低设备工作效率。本文设计了一种飞行器综合热管理系统,以解决气动加热与设备发热问题。并建立系统瞬态模型,得到了长时间飞行任务中飞行器上各个区域的温度,对比了不同储冷材料质量、不同载冷剂流速
学位
随着新能源汽车的普及与发展,其安全性问题受到了重点的关注。尤其是热失控所造成的着火、爆炸问题是行业发展的痛点。在热失控安全问题里,过充触发电池发生热失控由于额外注入了大量的能量,热失控危害更大。因此本文基于COMSOL Multiphysics多物理场数值模拟软件对锂离子电池单体以及模组进行研究,主要的工作和结论如下:建立过充电池单体热失控模型,对其内在机理和演变规律进行分析,发现过充阶段电压变化
学位