重离子辐照生防菌BJ1突变菌株选育及其诱导抗性机制的研究

来源 :中国科学院近代物理研究所 | 被引量 : 0次 | 上传用户:akk871204
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的:利用重离子辐照技术选育出对农作物具有更好防病促生作用的突变生防菌株,探讨利用突变株诱导黄瓜对枯萎病菌产生抗病性的作用机制。   材料与方法:   采用兰州重离子研究装置(HIRFL)加速的碳离子束辐照生防菌BJ1,测定抑菌能力、抑菌谱,确定对该菌株最适宜的离子辐照参数,选育突变菌株。对突变株进行室内盆栽和田间防病促生试验。对原菌株和突变株进行16SrDNA和生理生化反应鉴定,确定分类地位。以突变株为对象进行诱导黄瓜对枯萎病菌产生抗病性的实验。   结果与结论:   1.重离子辐照生防菌BJ1的存活曲线随剂量的增加,呈先降后升再降的马鞍型变化,但是由于离子的能量不同也存在差异,表现为在相同的剂量下,能量越低其能量沉积效应即传能线密度(LET)越大,致死率越高。诱变效果随LET的不同也不尽相同,高LET时的突变株不但有更广的抑菌谱而且抑菌活性较对照也有比较大的提高,在存活率较高的条件下,低剂量就可以得到较多的突变体,有利于筛选优良的正突变体;   2.对于生防菌BJ1最适宜的12C6+辐照参数应选择剂量在200—400Gy,LET为60keV/μm范围可筛选获得抑菌活性较高的菌株;   3.通过12C辐照结合抑菌试验最终获得了突变菌株154,该突变株通过20代的移植能够稳定遗传;   4.利用突变株154对黄瓜枯萎病菌进行室内盆栽促生试验,结果表明突变株154能够使促进黄瓜幼苗的生长发育,同时提高了黄瓜植株的抗病性,在对黄瓜枯萎病的防治效果上经154处理的达到了70.34%,高于原菌株和农药防治的效果;   5.传统的生理生化特征结合16SrDNA同源性比对的方法,对菌株BJ1及其突变株154的鉴定结果表明二者均属枯草芽孢杆菌,亲缘关系近,但是突变株154生化测定不同于原菌株,表现为抗菌物质的产量较高;   6.BJ1、154都可在番茄、当归和黄芪的根部有效的定殖,适应根部的生长环境,并且154的定殖能力稍强;   7.BJ1、154防治当归麻口病效果较好,防治效果最好的是154的20倍液浸苗,防效为82.6%;BJ1的20倍液浸苗与154的10倍液浸苗对麻口病防治效果差别不大,防效分别为78.3%、75.62%;其余处理防效低于62%。   8.BJ1和154处理黄瓜幼苗后,植物体内一系列与抗病性有关的保护酶的活性均有不同程度的提高,因而可认为这些酶活性的改变与生防菌诱导的黄瓜对枯萎病的抗性可能有一定的相关性。
其他文献
钧瓷原产于河南省神厘镇,是中国北方宋元时期一类十分重要的瓷器产品,以独特的窑变工艺著称于世。其具有分相结构的深浅不一的天蓝乳浊釉及独创的铜红釉至今仍令人称叹不已。铜
学位
长余辉材料是在激发时能够储存能量,激发停止后仍能持续发光的一类蓄能、节能的发光物质,在军事及民用领域如紧急照明及显示、室内装潢等有广阔的应用前景,多年来一直吸引着研究
学位
本论文首先对相关随机延迟理论进行了介绍和延伸,其次将其应用到典型的生物系统,考察了这些系统中的随机和延迟效应。全文分两部分,第一部分以单噪声的Langevin方程(LE)为摹础,推
在光纤通信高速发展的今天,限制光通信系统发展的主要矛盾发生了根本的变化,由原来的衰减受限转变为现在的色散受限,色散严重制约着光纤信息容量的发展,如何解决高速光通信系统中
半导体中电场诱导的非平衡自旋极化(或自旋流)是目前自旋电子学领域中一个非常重要的研究热点。理论研究表明,有两种不同的物理机制可导致半导体中电场诱导的非平衡自旋极化(
兰州重离子冷却储存环(HIRFL-CSR)工程的建成,极大的扩展了我国核物理实验研究的领域和内容。在CSR束流条件下,强子物理、放射性束物理以及重离子碰撞动力学研究将是原子核物
学位
光动力学疗法(photodynamic therapy,PDT)治疗恶性肿瘤是近20余年兴起并不断发展的新技术,其原理是利用光敏剂选择性聚积、储留于肿瘤组织内,并能在特定波长的光照下,通过光化学
傍轴光束在非局域非线性介质的传输过程中,满足非局域非线性薛定谔方程(NNLSE).本文主要研究了在弱非局域克尔介质中(1+1)维空间光孤子的传输情况,用微扰的方法求出了孤子的近似
量子密钥分发(QKD)因其无条件的安全性吸引全球科研机构的广泛关注。与经典的密码学不同的是量子密钥分发的安全性是建立在测不准原理和不可克隆定理基础之上的,而不是计算的
本文的主要工作是应用色散关系理论研究γγ→ππ过程。首先通过拟合实验数据得到两个道的T-矩阵元T(ππ→ππ),T(ππ→-KK),T(-KK→-KK)。应用色散关系写出振幅F(γγ→π