论文部分内容阅读
随着信息技术和互联网的飞速发展,网络中的数据信息不断的巨增。如何快速的帮助用户在大量的数据信息中发现对他们有价值的信息,和如何让网络中的数据信息受到更多用户的关注成为有待解决的问题。而个性化推荐系统是解决该问题的一个重要工具。最近几年,越来越多的研究者对基于标签的推荐算法开始关注。但是,传统的基于标签的推荐算法仅仅只对用户是否选择过项目进行判断,而忽略了用户对项目的行为信息的研究。并且大多数算法都把那些流行的热门的商品推荐给用户,而对影响推荐结果的项目的受欢的程度却没有考虑,从而忽略了多样性、新颖性等重要指标的衡量。针对上述问题,本文在研究分析已有的基于用户标签的推荐算法的基础上,提出了一种改进的基于标签的个性化推荐算法。主要工作包括以下几个方面:①在推荐算法的相关技术方面做了深入调研。分析了目前几种最常用的推荐算法,并对这几种推荐算法的优劣进行了比较。其中,详细分析和研究了基于标签的推荐算法。②考虑到用户的标签数据对推荐新颖性和可解释性的影响,利用用户标签行为数据构成标签的推荐系统,并对不同标签下用户的推荐结果进行分析得到更合理的推荐结果。③为了降低给热门标签对应的热门物品很大的权重,提高推荐结果的新颖性,利用用户的标签向量对用户兴趣建模的改进,降低对热门物品打标签的次数,提高算法的新颖性和准确性。④采用MovieLens网站提供的数据集对改进的基于标签的推荐算法进行测试,从准确性、多样性以及新颖性三个方面进行分析。实验结果表明改进算法在三个方面都有较好的表现,验证了算法的可行性和有效性。