腔光机械系统的动力学相变和选择性能量交换

来源 :山西大学 | 被引量 : 0次 | 上传用户:suing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,与腔光机械系统相关的量子力学行为得到广泛研究,其中量子非线性行为已成为重要研究内容。相变演化方程是表征伴随新相生长中各相含量随时间的演化。目前,相变演化方程是通过相变驱动力、温度和相变弛豫时间来表征新相质量分数,该方式是基于唯象理论得到的,缺点是忽视了相变发生中的物理机制。另外,以量子不确定关系为基础的模压缩也发展为腔光机械系统中的热点问题。本文分别探究了单模腔光机械系统和双模腔光机械系统中的动力学相变和选择性能量交换。我们发现:无论单模腔光机械系统还是双模腔光机械系统,系统都会经历类似于Dicke-Hepp-Lieb超辐射类型的动力学相变,且在双模腔光机械系统中通过调控腔模与机械模之间的耦合强度或两腔耦合强度都会出现新的动力学临界点;双模腔光机械系统的两腔耦合强度等价于两腔间无耦合时系统的外场驱动;通过腔模与机械模之间的耦合强度和两腔耦合强度的调节,任意两模间的选择性能量交换被实现,同时临界耦合点与选择性能量交换对应;模压缩是能量转换的标志,且任何两模之间的模压缩是由特定模之间的能量交换所决定。主要研究内容如下:(1)介绍了腔光机械系统的研究背景,主要从机械振子、腔光机械系统、相变和模压缩等方面进行了系统的阐述。(2)分析了单模腔光机械系统的动力学相变和选择性能量交换。我们首先将单模腔光机械系统的哈密顿量进行了旋转变换,然后得到了系统的有效哈密顿量;然后基于海森堡-朗之万方程,推导出系统相关算符的运动方程;最终给出了正常相下光模和机械模的激发能。通过激发能随耦合参数的变化,我们发现:该系统在临界点处发生的动力学相变与Dicke模型的正常相到超辐射的量子相变对应,动力学相变的稳定相对应于正常相,而动力学相变的不稳定相对应于超辐射相。由于该系统只有两模,所以并不是严格意义上的量子相变。基于量子不确定关系和波戈留波夫变换,我们给出坐标和动量的方差表达式。动力学临界点处坐标方差的不被压缩和动量方差的最大压缩表明模压缩是能量转换的标志。(3)探讨了双模腔光机械系统的动力学相变和选择性能量交换,分两光腔间无耦合和有耦合两种情况进行讨论。研究方法与第二章相同,但光腔模的增加导致一些新的动力学相变特性和新的动力学临界相变点出现。动力学临界点处显示出最大压缩,可见模压缩是能量转换的标志。基于傅立叶变换给出的模分裂,我们再次验证了:在双模腔光机械系统中不同耦合参数的调控可以实现不同模式的自主选择性能量交换。
其他文献
四波混频(FWM)作为重要的三阶非线性效应从上世纪以来就被广泛研究。随着电磁感应透明(EIT)等原子相干效应的发现,人们将EIT应用到FWM的研究中,极大地增强了FWM效率,产生的光束之间具有强的量子关联性可以用于许多领域,如:量子通信、光谱分析和量子成像等,其研究使FWM的应用更加丰富。本文基于双EIT原子系统,开展有关FWM的理论和实验研究,论文主要分为以下四个部分:一:对本文涉及到的物理概念
最近,非厄米系统在实验和理论领域都得到了很大的发展。研究发现,非厄米性可以极大的改变在厄米情况下确立的拓扑行为,例如,受增益和损耗分布影响的边界模。另一方面,拓扑绝缘体在开边界条件下表现出绝缘的体态和无间隙边界态,其特征在于拓扑不变量,例如Su-Schrieffer-Heeger(SSH)模型。SSH模型的手征对称性是导致非平庸拓扑结构产生的原因,可以通过缠绕数以及在开边界条件热力学极限下是否存在
杜氏藻是一类具有极高研究价值的嗜盐微藻,常生活于盐度较高的湖泊、海洋等咸水水域中。杜氏藻内含有丰富的β-胡萝卜素,其体内的牻牛儿基焦磷酸合酶(Geranylgeranyl pyrophosphate synthase,GGPS)又称GGPP合成酶,在β-胡萝卜素的合成代谢过程中发挥着重要的作用。本研究对15株不同品系的杜氏藻进行培养,利用光学显微镜进行形态学观察,并对其关键生理生化指标进行测定。在
量子行走是经典随机行走在量子力学中的推广,但有着传播速度快等许多优于经典随机行走的动力学特性,因此可以用量子行走设计许多高效的量子算法,实现量子计算和量子信息的传输。同时分离时间量子行走展示出丰富的拓扑特性,为模拟凝聚态物理中一些新奇特性提供了易操控、灵活多样的人造量子平台。本文首先介绍量子行走的基本概念,PT对称理论以及分步量子行走的拓扑特性。在此基础上,研究了幺正和非幺正多周期量子行走的拓扑性
纳米光纤由于具备体积小、柔软可弯折、低损耗、耐腐蚀等特性,使其成为微型化集成化传感器领域中的新兴研究热点。纳米光纤作为一种新型的传感元件近年来已在能源化工、食品制药、冶金采矿等领域被广泛使用,除此以外,其在基础科学研究领域也显示出了其优异的性能。纳米光纤在光与物质相互作用中作为一种媒介已经成功应用于诸多领域中,包括光学传感、光学势阱、量子光学等。由于纳米光纤波导尺寸小于引导光的光学波长,引导光模式
电子通过介观系统的量子输运一直是一个活跃的研究领域,相关的电子输运理论和纳米器件的制备得到了广泛的应用,为设计和改进量子器件的性能提供了重要依据。随着对器件的精度要求越来越高,各种各样对输运性质产生影响的因素越来越受到人们的重视,其中材料界面结构随时间的微小变化对系统的输运性质产生的影响受到了特别关注。本文考虑量子点与电极界面的结构变化,进一步研究量子点系统的量子输运特性。我们首先介绍基于非平衡格
1963年Edwin Jaynes和Fred Cummings首次提出Jaynes-Cummings模型(J-C模型),这使得人们可以从物质结构的深层次去研究场-原子之间相互作用的理论。Tavis-Cummings模型(T-C模型)是对J-C模型的扩展,主要描述了两个二能级原子和单模量子化电磁场之间的相互作用,但并未考虑原子之间的相互作用。近年来,研究者还讨论了J-C模型和T-C模型相关系统中的量
现代科学技术的迅速发展,使得光学精密测量、光通讯以及光信息处理的精度和准确度达到了越来越高的水平。在光信号的测量和处理中,虽然可以用有效的方法去除掉测量时经典误差源的影响,但是诸多量子噪声的存在,从根本上制约了测量精密度和准确度的提高,因此,如何减小量子噪声对测量的影响是科技工作者研究的热点课题之一。平衡零拍探测技术,是测量光场量子噪声的最佳方法之一,可以直接表征出信号光场的正交噪声分量信息;并且
量子调控是基于量子物理理论知识的前沿学科,在量子信息处理、量子模拟等研究领域具有重要的科学价值。借助外场条件和技术手段对物态的量子现象进行调控,可以设计并构筑人工微结构,对建立全新的量子调控技术和量子器件小型化具有重要的意义。原子能级、原子量子调控以及原子成像机制等是构造原子水平上电子器件量子效应与调控技术的重要载体,是原子材料器件和原子尺度器件的基础和核心。原子相干效应是利用外场对原子进行量子调
量子系统具有经典系统所不存在的迷人特性。这些特性可以从量子关联的不同方面进行探讨和研究,例如Bell非定域性、量子纠缠、量子失协和量子导引等。量子关联特性不仅具有理论性意义,而且可以作为量子通信、量子计量学等新兴技术中不可或缺的物理资源加以开发和利用。在实验研究中,为了从量子态中提取信息,人们通常需要进行量子测量。这些量子测量操作技术自然地促成了量子费舍信息的出现。在量子领域,费舍信息具有经典世界